TITLE

A Combined Method for Segmentation and Registration for an Advanced and Progressive Evaluation of Thermal Images

AUTHOR(S)
Barcelos, Emilio Z.; Caminhas, Walmir M.; Ribeiro, Eraldo; Pimenta, Eduardo M.; Palhares, Reinaldo M.
PUB. DATE
November 2014
SOURCE
Sensors (14248220);2014, Vol. 14 Issue 11, p21950
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
In this paper, a method that combines image analysis techniques, such as segmentation and registration, is proposed for an advanced and progressive evaluation of thermograms. The method is applied for the prevention of muscle injury in high-performance athletes, in collaboration with a Brazilian professional soccer club. The goal is to produce information on spatio-temporal variations of thermograms favoring the investigation of the athletes' conditions along the competition. The proposed method improves on current practice by providing a means for automatically detecting adaptive body-shaped regions of interest, instead of the manual selection of simple shapes. Specifically, our approach combines the optimization features in Otsu's method with a correction factor and post-processing techniques, enhancing thermal-image segmentation when compared to other methods. Additional contributions resulting from the combination of the segmentation and registration steps of our approach are the progressive analyses of thermograms in a unique spatial coordinate system and the accurate extraction of measurements and isotherms.
ACCESSION #
99660340

 

Related Articles

  • calorimeter.  // Taber's Cyclopedic Medical Dictionary (2009);2009, Issue 21, p342 

    An encyclopedia entry for "calorimeter" is presented.

  • Automated, small sample-size adiabatic calorimeter. Van Oort, Michiel J. M.; White, Mary Anne // Review of Scientific Instruments;Jul1987, Vol. 58 Issue 7, p1239 

    An automated adiabatic calorimeter with an internal volume of 5 cm3, operable over the temperature range from 30 to 380 K is described. One of the main advantages of this calorimeter over others in use is the much abbreviated down time during sample changes, due to interchangeable sample vessels...

  • Scanning calorimeter for nanoliter-scale liquid samples. Olson, E. A.; Olson, E.A.; Efremov, M. Yu.; Efremov, M. Yu; Kwan, A. T.; Kwan, A.T.; Lai, S.; Petrova, V.; Schiettekatte, F.; Shiettekatte, F.; Warren, J. T.; Warren, J.T.; Zhang, M.; Allen, L. H.; Allen, L.H. // Applied Physics Letters;10/23/2000, Vol. 77 Issue 17 

    We introduce a scanning calorimeter for use with a single solid or liquid sample with a volume down to a few nanoliters. Its use is demonstrated with the melting of 52 nL of indium, using heating rates from 100 to 1000 K/s. The heat of fusion was measured to within 5% of the bulk value, and the...

  • High-pressure photoacoustic calorimetry. Daffron, John A.; Farrell, Gerard J.; Burkey, Theodore J. // Review of Scientific Instruments;Oct2000, Vol. 71 Issue 10 

    A high-pressure photoacoustic calorimeter has been developed to operate up to 200 MPa. Photoacoustic calorimetry can be used to study the microsecond kinetics and thermodynamics of reactions in solution. Both thermal expansion and volume of reaction contribute to the generation of the...

  • A modified dual-slope method for heat capacity measurements of condensable gases. Pilla, S.; Hamida, J. A.; Hamida, J.A.; Sullivan, N. S.; Sullivan, N.S. // Review of Scientific Instruments;Oct2000, Vol. 71 Issue 10 

    A high resolution nonadiabatic method for measuring the heat capacity (C[sub P]) of bulk samples of condensable gases in the range of 7.5-70 K is described. In this method C[sub P] is evaluated by directly comparing the heating and cooling rates of the sample temperature for two algebraically...

  • Differential microcalorimeter for liquid samples. Barbini, A.; Bertolini, D.; Cassettari, M.; Papucci, F.; Salvetti, A.; Salvetti, G.; Veronesi, S. // Review of Scientific Instruments;Jul1989, Vol. 60 Issue 7, p1308 

    A microcalorimeter for liquid samples with high performance and low cost is described. It is essentially a differential apparatus in a ‘‘twin’’ configuration with two cylindrical cells. Two resistive sensors, put in a Wheatstone bridge, are wound on the cells to measure...

  • An isothermal scanning calorimeter controlled by linear pressure variations from 0.1 to 400 MPa. Calibration and comparison with the piezothermal technique. Randzio, Stanislaw L.; Grolier, Jean-Pierre E.; Quint, Jacques R. // Review of Scientific Instruments;Apr94, Vol. 65 Issue 4, p960 

    An isothermal scanning calorimeter controlled by linear pressure variations is described for the pressure range 0.1-400 MPa at temperatures from 303 to 573 K. The rate of pressure variations can be as low as 0.002 MPa/s over the whole pressure range. The functioning of the instrument was tested...

  • Development of a high-sensitivity, computer-controlled titration calorimeter. Baisden, P. A.; Grant, P. M.; Kinard, W. F. // Review of Scientific Instruments;Oct87, Vol. 58 Issue 10, p1937 

    A highly sensitive, adiabatic titration calorimeter controlled by a personal computer is described. Operation of the entire calorimetric titration is automated, including the thermoelectric offset of the heat of stirring, the electrical calibration of the heat capacity, the addition of titrant,...

  • Ion-Implanted Silicon X-Ray Calorimeters: Present and Future. R. Kelley; C. Allen; M. Galeazzi; C. Kilbourne; D. McCammon; F. Porter; A. Szymkowiak // Journal of Low Temperature Physics;Apr2008, Vol. 151 Issue 1/2, p375 

    Abstract  We now have about 25 years of experience with X-ray calorimeters based on doped semiconductor thermometers. Ion-implanted Si arrays have been used in astrophysics and laboratory atomic physics. The device properties and characteristics are sufficiently well understood to allow...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics