TITLE

Forces in atomic force microscopy in air and water

AUTHOR(S)
Weisenhorn, A. L.; Hansma, P. K.; Albrecht, T. R.; Quate, C. F.
PUB. DATE
June 1989
SOURCE
Applied Physics Letters;6/26/1989, Vol. 54 Issue 26, p2651
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
A new atomic force microscope, which combines a microfabricated cantilever with an optical lever detection system, now makes it possible to measure the absolute force applied by a tip on a surface. This absolute force has been measured as a function of distance (=position of the surface) in air and water over a range of 600 nm. In the absolute force versus distance curves there are two transitions from touching the surface to a total release in air caused by van der Waals interaction and surface tension. One transition is due to lifting off the surface; the other is due to lifting out of an adsorbed layer on the surface. In water there is just one transition due to lifting off the surface. There is also a transition in air and water when the totally released tip is pulled down to touch the surface as the surface and tip are brought together. Based on the force versus distance curves, we propose a procedure to set the lowest possible imaging force. It can now be as low as 10-9 N or less in water and 10-7 N in air.
ACCESSION #
9831783

 

Related Articles

  • Optical scan-correction system applied to atomic force microscopy. Barrett, R. C.; Quate, C. F. // Review of Scientific Instruments;Jun91, Vol. 62 Issue 6, p1393 

    Nonlinearities inherent in the piezoelectric actuators used in high-resolution scanning probe microscopies limit the usefulness of the instruments for precision dimensional measurements of submicrometer to micrometer scale structures. These nonlinearities can result in images where the scale...

  • AFM fast tip approach based on fiber optic sensor. Daixie Chen; Bohua Yin; Yu Ju; Yunsheng Lin; Mingzhang Chu; Han Li // Key Engineering Materials;2014, Vol. 609-610, p1008 

    As AFM tip approach speed is one of the key factors for AFM industrial on-line detection application, a sectional fast tip approach method composed of rough approach and mild approach processes is introduced here. In rough approach process, AFM tip can be approached by step motor to certain...

  • On the Thermodynamics of Contact Interaction in an Atomic Force Microscope. Rekhviashvili, S. Sh. // Technical Physics;Oct2001, Vol. 46 Issue 10, p1335 

    Contact interaction in an atomic force microscope is considered in terms of the thermodynamic approach. It is shown that hysteresis observed when a sample is probed in the vertical direction is due to the surface energy-work thermodynamic cycle. The force of sample-tip interaction is calculated...

  • Atomic Force Microscope in a Contactless Mode: Peculiarities of Force Interactions. Rekhviashvili, S. Sh. // Technical Physics Letters;Jun2000, Vol. 26 Issue 6, p517 

    Forces of interaction between the atomic force microscope (AFM) probe and the surface of a solid are calculated with an allowance for the induced cantilever oscillations. A continuous approximation used in this work does not take into account discreteness of the sample and probe structures....

  • Parallel beam approximation for V-shaped atomic force microscope cantilevers. Sader, John Elie // Review of Scientific Instruments;Sep95, Vol. 66 Issue 9, p4583 

    Presents a detailed investigation of the deflection properties of the V-shaped atomic force microscope cantilever. Validity and accuracy of the parallel beam approximation provided the width and length of the parallel rectangular arms are chosen appropriately; Geometry of the V-shaped cantilever.

  • Erratum: “Atomic force microscope cantilever spring constant evaluation for higher mode oscillations: A kinetostatic method” [Rev. Sci. Instrum. 79, 025102 (2008)]. Tseytlin, Yakov M. // Review of Scientific Instruments;May2008, Vol. 79 Issue 5, p059901 

    This article presents a correction of a previously published paper on atomic force microscopes.

  • Strain relaxation at cleaved surfaces studied by atomic force microscopy. Lelarge, F.; Dehaese, O.; Kapon, E.; Priester, C. // Applied Physics A: Materials Science & Processing;1999, Vol. 69 Issue 3, p347 

    Abstract. Atomic force microscopy (AFM) in air is used to study the (110) cleaved surface of strained (100) In[sub x]Ga[sub 1-x]As/ InP heterostructures for different compositions and thicknesses of the ternary compound layers. We find that the elastic strain relaxation induces a surface...

  • Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope. Chui, B. W.; Stowe, T. D.; Kenny, T. W.; Mamin, H. J.; Terris, B. D.; Rugar, D. // Applied Physics Letters;10/28/1996, Vol. 69 Issue 18, p2767 

    Low-stiffness silicon cantilevers have been developed for proposed data storage devices based on the atomic force microscope, in particular thermomechanical recording. The cantilevers combine a sharp tip with an integrated piezoresistive sensor for data readback from a rotating polycarbonate...

  • Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers. Kumar, Jayant; Li, Lian; Jiang, Xin Li; Kim, Dong-Yu; Lee, Taek Seung; Tripathy, Sukant // Applied Physics Letters;4/27/1998, Vol. 72 Issue 17 

    A model for the formation of holographic surface relief gratings in azobenzene functionalized polymers is presented. Forces leading to migration of polymer chains upon exposure to light in the absorption band of the azo chromophore are attributed to dipoles interacting with the gradient of the...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics