Planar Ge/Pd and alloyed Au-Ge-Ni ohmic contacts to n-AlxGa1-xAs (0≤x≤0.3)

Marshall, E. D.; Yu, L. S.; Lau, S. S.; Kuech, T. F.; Kavanagh, K. L.
February 1989
Applied Physics Letters;2/20/1989, Vol. 54 Issue 8, p721
Academic Journal
Specific contact resistivity ρc of planar Ge/Pd ohmic contacts to n-type AlxGa1-xAs is measured as a function of AlAs mole fraction x and anneal temperature Tann. The functional dependence of ρc on Tann is the same for all x, decreasing to a minimum at 275–325 °C. This indicates that the ohmic contact formation mechanism is independent of x(0≤x≤0.3) as verified by MeV Rutherford backscattering spectrometry and Read camera glancing angle x-ray diffraction. Decomposition of an epitaxial Pd-AlxGa1-xAs phase is correlated with the onset of ohmic behavior and may result in a thin solid phase regrown interfacial AlxGa1-xAs layer. An undoped 20 nm GaAs cap layer reduces ρc by about one order of magnitude. Ge/Pd contacts display greater dependence of ρc on x and much smoother surface morphology compared with those of standard Au-Ge-Ni contacts on AlxGa1-xAs (0≤x≤0.3).


Related Articles

  • Comparison between ruthenium-based and other ohmic contact systems to p-type GaAs. Barnard, W.O.; Myburg, G. // Applied Physics Letters;10/19/1992, Vol. 61 Issue 16, p1933 

    Examines the electrical and morphological properties of ruthenium-gold (Ru/Au) ohmic contact system grown on gallium arsenide substrates. Details on the surface morphology of Ru/Au contact system; Details on the thermal stability and specific contact resistance of Ru; Application of Ru contacts...

  • Thermally stable, low-resistance NiInWN[sub x] ohmic contacts to n-type GaAs prepared by sputter.... Murakami, Masanori; Lustig, Naftali; Price, W.H.; Fleischman, A. // Applied Physics Letters;11/4/1991, Vol. 59 Issue 19, p2409 

    Develops a thermally stable, low-resistance indium-based NiInW ohmic contact to n-type gallium arsenide by sputter deposition. Composition of the contacts; Observation on the contact resistance and contact morphology; Incorporation of n-type dopants into the metallization.

  • Ohmic contact to p-type GaAs using Cu[sub 3]Ge. Aboelfotoh, M. O.; Borek, M. A.; Narayan, J. // Applied Physics Letters;12/20/1999, Vol. 75 Issue 25, p3953 

    Investigates ohmic contact to p-type gallium arsenide (GaAs) using Cu[sub 3]Ge. Specific doping concentration and contact resistivity of Cu[sub 3]Ge contact on p-type GaAs; Low contact resistivity resulting from the incorporation of Ge into the GaAs as a p-type impurity.

  • Theoretical specific resistance of ohmic contacts to n-GaAs. Yoo, Jae S.; Lee, Hong H. // Journal of Applied Physics;11/1/1990, Vol. 68 Issue 9, p4903 

    Presents an improved version of a prior model for specific resistance of ohmic contacts to n-gallium arsenide. Use of the three-band model in the improved version; Variation of the theoretical contact resistance at high intrinsic barrier heights; Ultimate limit to the contact resistance.

  • Regrowth of a GaAs layer for n-GaAs ohmic contacts. Li, Baoqi; Holloway, Paul H. // Journal of Applied Physics;5/1/1992, Vol. 71 Issue 9, p4385 

    Presents a study which developed a controllable fabrication process to yield ohmic contacts with smooth surface and interface morphology and low contact resistance by regrowth of a highly doped gallium arsenide layer. Experimental details; Results and discussion; Conclusion.

  • Thermally stable ohmic contacts to n-type GaAs. III. GeInW and NiInW contact metals. Murakami, Masanori; Shih, Yih-Cheng; Price, W. H.; Wilkie, E. L.; Childs, K. D.; Parks, C. C. // Journal of Applied Physics;8/15/1988, Vol. 64 Issue 4, p1974 

    Presents information on a study which discussed improvement in thermally stable, low-resistance ohmic contacts to n-type gallium arsenide (GaAs) for germanium indium tungsten and nickel indium tungsten contact metals. Experimental procedures; Contact resistance measurements; Microstructural...

  • In/Pt ohmic contacts to GaAs. Marvin, Dean C.; Ives, Neil A.; Leung, Martin S. // Journal of Applied Physics;10/1/1985, Vol. 58 Issue 7, p2659 

    Presents a study which prepared graded heterojunction indium gallium arsenide (InGaAs) ohmic contacts to GaAs which show improved electrical and mechanical properties. Method of the study; Results and discussion; Conclusion.

  • Thermally stable, low resistance PdGe-based ohmic contacts to high-low doped n-GaAs. Kwak, J.S.; Kim, H.N. // Applied Physics Letters;10/23/1995, Vol. 67 Issue 17, p2465 

    Examines the thermally stable, low-resistance PdGe-based ohmic contacts to high-low doped gallium arsenide (GaAs) power metal-semiconductor field. Stability of contacts after isothermal annealing; Role of AuGa compound for the creation of gallium vacancies; Increase of carrier concentration at...

  • Characterization of low-resistance ohmic contacts to n- and p-type InGaAs. Lin, J. C.; Yu, S. Y.; Mohney, S. E. // Journal of Applied Physics;Jul2013, Vol. 114 Issue 4, p044504 

    Multilayer ohmic contacts with differing first metal layers (M = Mo, Pd, Pt) beneath a Ti/Pt diffusion barrier and Au cap were fabricated on n+ and p+-InGaAs, and the relationship between their specific contact resistance and interfacial chemistry was examined. Palladium-based contacts offered...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics