TITLE

Boron redistribution in doping superlattices grown by silicon molecular beam epitaxy using B2O3

AUTHOR(S)
Jackman, T. E.; Houghton, D. C.; Denhoff, M. W.; Kechang, Song; McCaffrey, J.; Jackman, J. A.; Tuppen, C. G.
PUB. DATE
September 1988
SOURCE
Applied Physics Letters;9/5/1988, Vol. 53 Issue 10, p877
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Coevaporation of B2O3 during silicon molecular beam epitaxy has been used to prepare heavily doped superlattices (pipi’s). Full activation up to 3×1020 cm-3 (100 times the solid solubility limit) was obtained at growth temperatures below 700 °C. Significant boron redistribution has been observed into the undoped layers when the dopant level in the intentionally doped layers exceeds the solid solubility limit and the growth temperature is greater than 700 °C. Oxygen was not incorporated into the lattice for growth temperatures above 700 °C when using B2O3 as the source of boron, a Si growth rate for 0.5 nm s-1, and a B2O3 arrival rate of ∼2×1013 cm-2 s-1.
ACCESSION #
9827978

 

Related Articles

  • Molecular-beam-epitaxy doping kinetics: A rate equation model. Bendi, Shridhar; Venkatsubramanian, R.; Dorsey, Donald L. // Journal of Applied Physics;11/1/1994, Vol. 76 Issue 9, p5202 

    Develops a rate equation model based on the master equation approach for the study of molecular-beam-epitaxy doping kinetics. Link between indium (In) and the host lattice; Details of several proposed models to explain observations in the doping of silicon (Si); Elementary surface kinetic...

  • Irradiation enhanced diffusion of boron in delta-doped silicon. Léveque, P.; Kuznetsov, A. Yu.; Christensen, J. S.; Svensson, B. G.; Larsen, A. Nylandsted // Journal of Applied Physics;5/15/2001, Vol. 89 Issue 10, p5400 

    Two kinds of silicon samples have been used in this work: one containing a sequence of boron spikes and one with a sequence of alternating boron and antimony spikes, both grown by molecular beam epitaxy. These samples were irradiated with 2.5 MeV protons at an elevated temperature ranging from...

  • Structure and optical properties of Ge-Si ordered superlattices. Bevk, J.; Ourmazd, A.; Feldman, L. C.; Pearsall, T. P.; Bonar, J. M.; Davidson, B. A.; Mannaerts, J. P. // Applied Physics Letters;3/23/1987, Vol. 50 Issue 12, p760 

    We report the synthesis, structural characterization, and optical studies of ultrathin Ge-Si superlattices, grown by molecular beam epitaxy, on (001) silicon substrates. Structures consist of alternating layers of pure Ge and Si, with layer thicknesses of 1, 2, 4, and 6 monolayers. Using...

  • X-ray characterization of Si delta-doping in GaAs. Hart, L.; Fahy, M.R.; Newman, R.C.; Fewster, P.F. // Applied Physics Letters;5/3/1993, Vol. 62 Issue 18, p2218 

    Examines the structural properties of a delta-doped superlattice grown by molecular beam epitaxy. Percentage of the period variation; Location of silicon atoms; Use of the high-resolution triple-axis diffractometer.

  • Boron heavy doping for Si molecular beam epitaxy using a HBO2 source. Tatsumi, Toru; Hirayama, Hiroyuki; Aizaki, Naoaki // Applied Physics Letters;5/4/1987, Vol. 50 Issue 18, p1234 

    Boron doping with a high carrier concentration has been realized in Si molecular beam epitaxy (MBE) using a HBO2 source with the usual Knudsen cell. Maximum carrier concentration has reached 6×1020 cm-3 at crucible temperatures of 900 °C. From a comparison between activation energy for...

  • Origin and reduction of interfacial boron spikes in silicon molecular beam epitaxy. Iyer, S. S.; Delage, S. L.; Scilla, G. J. // Applied Physics Letters;2/8/1988, Vol. 52 Issue 6, p486 

    An interfacial boron spike is formed during the molecular beam epitaxial growth of Si. We show two possible sources for this unintentional spike. We have found that some boron contamination invariably occurs when silicon surfaces are exposed to air. A greater degree of contamination results when...

  • Influence of boron on radiation enhanced diffusion of antimony in delta-doped silicon. Le´ve⁁que, P.; Christensen, J. S.; Kuznetsov, A. Yu.; Svensson, B. G.; Larsen, A. Nylandsted // Journal of Applied Physics;4/1/2002, Vol. 91 Issue 7, p4073 

    The silicon samples used in this work contain a sequence of alternating boron and antimony spikes grown by molecular beam epitaxy. These samples were irradiated with 2.5 MeV protons at elevated temperatures ranging from 580 °C to 830 °C and characterized by secondary-ion mass spectrometry....

  • B-doped Si(001) grown by gas-source molecular-beam epitaxy from Si2H6 and B2H6:B incorporation and electrical properties. Lu, Q.; Bramblett, T. R.; Lee, N.-E.; Hasan, M.-A.; Karasawa, T.; Greene, J. E. // Journal of Applied Physics;4/1/1995, Vol. 77 Issue 7, p3067 

    Deals with a study which grew boron-doped silicon films on silicon substrates by gas-source molecular beam epitaxy (GS-MBE) using Si[sub2]H[sub6] and B[sub2]H[sub6]. Background on GS-MBE; Experimental procedure; Experimental results; Discussion.

  • Heavily boron-doped Si layers grown below 700 °C by molecular beam epitaxy using a HBO2 source. Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J. // Applied Physics Letters;8/21/1989, Vol. 55 Issue 8, p795 

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500–700 °C using a HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics