Metalorganic molecular beam epitaxy of γ-Al2O3 films on Si at low growth temperatures

Sawada, Kazuaki; Ishida, Makoto; Nakamura, Tetsuro; Ohtake, Norio
May 1988
Applied Physics Letters;5/16/1988, Vol. 52 Issue 20, p1672
Academic Journal
Heteroepitaxial growth of γ-Al2O3 films was performed successfully onto (100) and (111) Si substrates at low substrate temperatures between 720 and 800 °C by metalorganic molecular beam epitaxy using N2 bubbled Al(CH3)3 and N2O. Using in situ reflection high-energy electron diffraction, the orientation relationships between epitaxial γ-Al2O3 films and Si substrates were found to be (100) γ-Al2O3//(100) Si with [110] γ-Al2O3//[110] Si and (111) γ-Al2O3//(111) Si with [112] γ-Al2O3//[112] Si. The stoichiometry of the grown films was found similar to that of Al2O3 from Auger signals.


Related Articles

  • Growth of high quality indium phosphide from metalorganic sources by molecular beam epitaxy. Andrews, D. A.; Davey, S. T.; Tuppen, C. G.; Wakefield, B.; Davies, G. J. // Applied Physics Letters;3/7/1988, Vol. 52 Issue 10, p816 

    We report the growth of nominally undoped InP by molecular beam epitaxy (MBE) from metallic indium, trimethylindium, or triethylindium and phosphine. We find significantly reduced acceptor incorporation when metalorganic sources are used, with exciton-dominated photoluminescence at 4.2 K and...

  • p-type conductivity control of ZnSe highly doped with nitrogen by metalorganic molecular beam epitaxy. Taike, A.; Migita, M.; Yamamoto, H. // Applied Physics Letters;5/14/1990, Vol. 56 Issue 20, p1989 

    p-type ZnSe with resistivity low enough for device application has been realized by metalorganic molecular beam epitaxy. This method has enabled growth of p-type ZnSe doped with nitrogen at concentrations as high as 1019 cm-3 by using ammonia as a dopant source. The dependence of...

  • Substrate temperature dependence of GaAs, GaInAs, and GaAlAs growth rates in metalorganic molecular beam epitaxy. Kobayashi, N.; Benchimol, J. L.; Alexandre, F.; Gao, Y. // Applied Physics Letters;12/7/1987, Vol. 51 Issue 23, p1907 

    The substrate temperature (Ts) dependence (350–700 °C) of GaAs and Ga1-y InyAs growth rates was investigated in metalorganic molecular beam epitaxy (MOMBE), using triethylgallium (TEG), trimethylindium (TMI), and solid arsenic (As4) sources. For GaAs growth, four distinct Ts dependent...

  • TMGa/TEGa interactions in metalorganic molecular beam epitaxy. Kamp, M.; Morsch, G. // Applied Physics Letters;1/16/1995, Vol. 66 Issue 3, p367 

    Observes the metalorganic molecular beam epitaxy of gallium arsenide growth rates interactions between the precursors of TMgallium and TE gallium. Proposal on the elementary adsorption and desorption mechanism; Investigation on the separate and common injection of alkyls; Discussion on the...

  • Passivation of carbon-doped GaAs layers by hydrogen introduced by annealing and growth ambients. Kozuch, D. M.; Stavola, Michael; Pearton, S. J.; Abernathy, C. R.; Hobson, W. S. // Journal of Applied Physics;4/15/1993, Vol. 73 Issue 8, p3716 

    Examines heavily C-doped GaAs epilayers grown by metalorganic molecular beam epitaxy and metalorganic vapor phase epitaxy by infrared absorption, secondary ion mass spectrometry and Hall measurements. Experimental procedures; Properties of C-H complexes in GaAs:C epitaxial layers; Conclusion.

  • Deep level defect study of molecular beam epitaxially grown silicon films. Xie, Y. H.; Wu, Y. Y.; Wang, K. L. // Applied Physics Letters;1/27/1986, Vol. 48 Issue 4, p287 

    We report the result of the study on the electrically active deep level defects in Si films grown by molecular beam epitaxy. A deep level defect at Ec-0.58 eV is consistently obtained for samples grown on substrates with purposely contaminated surfaces. The observed defects are all located...

  • Properties of Si layers grown by molecular beam epitaxy at very low temperatures. Jorke, H.; Kibbel, H.; Schäffler, F.; Casel, A.; Herzog, H.-J.; Kasper, E. // Applied Physics Letters;2/27/1989, Vol. 54 Issue 9, p819 

    (100) silicon molecular beam epitaxy films with etch pit densities below 103 cm-2 and χmin values of 3.3–3.9% were grown at very low temperatures (Ts =250–350 °C). Although dopant activation is significantly below unity at n=1018 Sb atoms/cm3 Hall mobilities of homogeneously...

  • Isotope-Pure Silicon Layers Grown by MBE. Godisov, O. N.; Kaliteevsky, A. K.; Safronov, A. Yu.; Korolev, V. I.; Ber, B. Ya.; Davydov, V. Yu.; Denisov, D. V.; Kaliteevsky, M. A.; Kop�ev, P. S.; Kovarsky, A. P.; Ustinov, V. M.; Pohl, H.-J. // Semiconductors;Dec2002, Vol. 36 Issue 12, p1400 

    Molecular-beam epitaxy with a solid source was used to grow silicon layers enriched with [sup 28]Si and [sup 30]Si isotopes to 99.93 and 99.34%, respectively. Secondary-ion mass spectrometry and Raman scattering spectroscopy were applied to demonstrate the high isotopic purity and crystal...

  • Evidence of Si presence in self-assembled Ge islands deposited on a Si(001) substrate. Magidson, V.; Regelman, D. V.; Beserman, R.; Dettmer, K. // Applied Physics Letters;8/24/1998, Vol. 73 Issue 8 

    Nominal Ge islands were grown by a molecular beam epitaxy technique on a Si(001) substrate. Island positions and shapes were measured by atomic force microscopy. Two types of islands with different sizes and shapes are present. The Si concentration distribution inside the islands was measured by...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics