Observation of subbands in the GaAlAs on two-dimensional electron gas field-effect transistor structures

Smoliner, J.; Hauser, M.; Gornik, E.; Weimann, G.
January 1988
Applied Physics Letters;1/4/88, Vol. 52 Issue 1, p33
Academic Journal
We have measured the current-voltage characteristics and its derivatives on GaAs-GaAlAs field-effect transistor samples having a semitransparent Au-Schottky gate contact, varying the band structure by illumination. In these samples electrons tunnel from the two-dimensional electron gas through the GaAlAs into a Schottky gate. Sharp peaks are observed in dI/dV after illumination at liquid-helium temperature. Using a self-consistent model, we are able to explain these peaks by resonant tunneling via subband states in the GaAlAs.


Related Articles

  • A 30-nm-Gate Field-Effect Transistor. Obolenskiı, S. V.; Kitaev, M. A. // Technical Physics Letters;May2000, Vol. 26 Issue 5, p408 

    The fabrication technology is developed for and characteristics are investigated of a GaAs Schottky-barrier field-effect transistor (SBFET) with an effective gate length of 30 nm. The SBFET power gain cutoff frequency is 150 GHz. The noise factor at 12-37 GHz is comparable with that of...

  • Roles of shallow and deep electron traps causing backgating in GaAs metal-semiconductor field-effect transistors. Khanna, Ravi; Das, Mukunda B. // Applied Physics Letters;4/7/1986, Vol. 48 Issue 14, p937 

    In GaAs metal-semiconductor field-effect transistors under backgating conditions, electrons can be trapped in ‘‘shallow’’ and deep trap levels. It is shown that the characteristics of these traps can be determined and those responsible for backgating can be identified...

  • Nonlinear high-frequency response of GaAs metal-semiconductor field-effect transistors. Abeles, J. H.; Tu, C. W.; Schwarz, S. A.; Brennan, T. M. // Applied Physics Letters;6/9/1986, Vol. 48 Issue 23, p1620 

    Calculations show that phase nonlinearity in 1 μm gate length power GaAs metal-semiconductor field-effect transistors (MESFET’s) can be accounted for by the variation of gate-channel capacitance with gate bias voltage. Buried-layer GaAs MESFET’s having constant gate-channel...

  • Performance of quarter-micron GaAs metal-semiconductor field-effect transistors on Si substrates. Aksun, M. I.; Morkoç, H.; Lester, L. F.; Duh, K. H. G.; Smith, P. M.; Chao, P. C.; Longerbone, M.; Erickson, L. P. // Applied Physics Letters;12/15/1986, Vol. 49 Issue 24, p1654 

    Metal-semiconductor field-effect transistors (MESFET’s) having quarter-micron gate lengths were fabricated in GaAs films grown directly on <100> silicon tilted towards <110> by 4°. Following the growth of 2 μm undoped GaAs buffer layer a 3 μm GaAs doped with Si to a level of...

  • The Effect of Hydrogenation on the Sink Breakdown Voltage of Transistors Based on Ion-Doped Gallium Arsenide Structures. Kagadeı, V. A.; Nefyodtsev, E. V.; Proskurovsky, D. I.; Romanenko, S. V.; Shirokova, L. S. // Technical Physics Letters;Jan2003, Vol. 29 Issue 1, p12 

    It was found that the hydrogenation of ion-doped gallium arsenide structures leads to an increase in the sink breakdown voltage of high-power microwave Schottky barrier field effect transistors based on such structures (from 7 up to 17 V) and in the power of related microwave integration...

  • Electrical properties of a W-B-N Schottky contact to GaAs. Kim, Yong Tae; Woo Lee, Chang; Joon Kim, Dong // Applied Physics Letters;3/23/1998, Vol. 72 Issue 12 

    We have achieved the highest barrier height (0.90 eV) with a Schottky contact scheme of W-B-N/GaAs after rapid thermal annealing (RTA) at 700 °C, and even after the RTA at 900 °C, its barrier height (0.77 eV) is relatively higher than those of W (0.55 eV) and W-N/GaAs Schottky contacts...

  • Heteroepitaxial In0.1Ga0.9As metal-semiconductor field-effect transistors fabricated on GaAs and Si substrates. Wang, G. W.; Ito, C.; Feng, M.; Kaliski, R.; McIntyre, D.; Lau, C.; Eu, V. K. // Applied Physics Letters;10/9/1989, Vol. 55 Issue 15, p1552 

    We present a comparison of device characteristics for In0.1 Ga0.9 As metal-semiconductor field-effect transistors (MESFETs) fabricated on GaAs and silicon substrates. The In0.1Ga0.9As layers are heteroepitaxially grown on GaAs and silicon substrates by metalorganic chemical vapor deposition. 0.5...

  • Si-implanted InGaP/GaAs metal-semiconductor field-effect transistors. Hyuga, Fumiaki; Aoki, Tatsuo // Applied Physics Letters;4/20/1992, Vol. 60 Issue 16, p1963 

    Proposes a device structure for silicon-implanted gallium arsenide (GaAs) metal-semiconductor field-effect transistors. Qualities of annealed indium-gallium phosphide/GaAs interfaces; Details on the intensity of the GaAs band-edge photoluminescence; Ways to achieve high-density GaAs integrated...

  • Elimination of the kink effect in GaAs metal semiconductor field-effect transistors by utilizing.... Haruyama, Junzi; Goto, Norio // Applied Physics Letters;8/24/1992, Vol. 61 Issue 8, p928 

    Investigates the elimination of the kink effect in gallium arsenide metal semiconductor field-effect transistors (FET) by utilizing a low-temperature buffer (LTB) layer. Components of LTB layer; Characteristics of the sidegating effect; Causes of the kink effect in type B FET.


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics