Boron heavy doping for Si molecular beam epitaxy using a HBO2 source

Tatsumi, Toru; Hirayama, Hiroyuki; Aizaki, Naoaki
May 1987
Applied Physics Letters;5/4/1987, Vol. 50 Issue 18, p1234
Academic Journal
Boron doping with a high carrier concentration has been realized in Si molecular beam epitaxy (MBE) using a HBO2 source with the usual Knudsen cell. Maximum carrier concentration has reached 6×1020 cm-3 at crucible temperatures of 900 °C. From a comparison between activation energy for vapor pressure and carrier concentration dependence on crucible temperature, it was concluded that boron evaporated in the form of HBO2 (g) from the HBO2 source. The boron profile achieved by Knudsen cell shutter opening and closing was sufficiently steep. The oxygen concentration in the epitaxial film depended on the growth temperature. Above 750 °C, the oxygen concentration decreased to under the detection limit of secondary ion mass spectroscopy, 1018 cm-3. These results make it possible to use boron as the p-type dopant in silicon MBE without using ion imbedding or a very high temperature crucible.


Related Articles

  • Origin and reduction of interfacial boron spikes in silicon molecular beam epitaxy. Iyer, S. S.; Delage, S. L.; Scilla, G. J. // Applied Physics Letters;2/8/1988, Vol. 52 Issue 6, p486 

    An interfacial boron spike is formed during the molecular beam epitaxial growth of Si. We show two possible sources for this unintentional spike. We have found that some boron contamination invariably occurs when silicon surfaces are exposed to air. A greater degree of contamination results when...

  • Influence of boron on radiation enhanced diffusion of antimony in delta-doped silicon. Le´ve⁁que, P.; Christensen, J. S.; Kuznetsov, A. Yu.; Svensson, B. G.; Larsen, A. Nylandsted // Journal of Applied Physics;4/1/2002, Vol. 91 Issue 7, p4073 

    The silicon samples used in this work contain a sequence of alternating boron and antimony spikes grown by molecular beam epitaxy. These samples were irradiated with 2.5 MeV protons at elevated temperatures ranging from 580 °C to 830 °C and characterized by secondary-ion mass spectrometry....

  • B-doped Si(001) grown by gas-source molecular-beam epitaxy from Si2H6 and B2H6:B incorporation and electrical properties. Lu, Q.; Bramblett, T. R.; Lee, N.-E.; Hasan, M.-A.; Karasawa, T.; Greene, J. E. // Journal of Applied Physics;4/1/1995, Vol. 77 Issue 7, p3067 

    Deals with a study which grew boron-doped silicon films on silicon substrates by gas-source molecular beam epitaxy (GS-MBE) using Si[sub2]H[sub6] and B[sub2]H[sub6]. Background on GS-MBE; Experimental procedure; Experimental results; Discussion.

  • Heavily boron-doped Si layers grown below 700 °C by molecular beam epitaxy using a HBO2 source. Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J. // Applied Physics Letters;8/21/1989, Vol. 55 Issue 8, p795 

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500–700 °C using a HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass...

  • Abrupt Boron Profiles by Silicon-MBE. Oehme, M.; Kasper, E. // International Journal of Modern Physics B: Condensed Matter Phys;11/20/2002, Vol. 16 Issue 28/29, p4285 

    Surface segregation and diffusion are the dominant mechanisms for profile smearing. However in the low temperature regime below 600°C diffusion is negligible. We investigated the dopant profile during silicon molecular beam epitaxy (MBE) in silicon (100). A method for measurement of the...

  • Boron doping in Si molecular beam epitaxy by co-evaporation of B2O3 or doped silicon. Ostrom, R. M.; Allen, F. G. // Applied Physics Letters;1/20/1986, Vol. 48 Issue 3, p221 

    We report on controlled boron doping of silicon molecular beam epitaxy (MBE) films by two techniques: sublimation of saturated boron-doped silicon from a boron nitride crucible and evaporation of B2O3 from a tungsten crucible. Both methods were performed with the simultaneous evaporation of...

  • Boron surface segregation in silicon molecular beam epitaxy. de Frésart, E.; Wang, K. L.; Rhee, S. S. // Applied Physics Letters;7/4/1988, Vol. 53 Issue 1, p48 

    Boron surface segregation in Si molecular beam epitaxy has been measured on Si(111) substrate as a function of the growth temperature (400 °C≤Ts≤900 °C) by Auger electron spectroscopy. Boron oxide (B2O3) was used as dopant material to achieve a boron concentration level of...

  • Boron redistribution in doping superlattices grown by silicon molecular beam epitaxy using B2O3. Jackman, T. E.; Houghton, D. C.; Denhoff, M. W.; Kechang, Song; McCaffrey, J.; Jackman, J. A.; Tuppen, C. G. // Applied Physics Letters;9/5/1988, Vol. 53 Issue 10, p877 

    Coevaporation of B2O3 during silicon molecular beam epitaxy has been used to prepare heavily doped superlattices (pipi’s). Full activation up to 3×1020 cm-3 (100 times the solid solubility limit) was obtained at growth temperatures below 700 °C. Significant boron redistribution has...

  • Using a hydrogen ambient to eliminate interfacial boron spikes in reduced temperature silicon epitaxy. Robbins, D. J.; Pidduck, A. J.; Glasper, J. L.; Young, I. M. // Applied Physics Letters;9/18/1989, Vol. 55 Issue 12, p1229 

    We show that the concentration of boron at the interface between a silicon epitaxial layer and an n-type Si substrate can be reduced to 109–1010 atoms cm-2, near the detection limit of secondary-ion mass spectrometry, when passivating oxide is desorbed from the substrate surface in a...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics