TITLE

Yb-doped InP grown by metalorganic chemical vapor deposition

AUTHOR(S)
Uwai, Kunihiko; Nakagome, Hiroshi; Takahei, Kenichiro
PUB. DATE
April 1987
SOURCE
Applied Physics Letters;4/13/1987, Vol. 50 Issue 15, p977
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Rare-earth ion Yb is doped into InP at concentrations ranging from 1×1015 to 3×1018 cm-3 by metalorganic chemical vapor deposition (MOCVD) using Yb(C5H5)3. Uniform depth profiles revealed by secondary ion mass spectroscopy indicate that controlled rare-earth doping can be achieved by MOCVD. The grown layers show distinct photoluminescence (PL) spectra at 1.2 eV originating from intra-4f-shell transitions in Yb as well as near-band-edge emissions at 1.4 eV. In contrast to Yb-ion-implanted InP [H. Ennen, J. Schneider, G. Pomrenke, and A. Axman, Appl. Phys. Lett. 43, 943(1983)], PL spectra of MOCVD-grown layers below 30 K suggest the absence of Yb ions associated with other impurities or defects. This shows that MOCVD-grown Yb-doped InP is of higher quality than the Yb-ion-implanted InP.
ACCESSION #
9822647

 

Related Articles

  • Dopant-induced lattice dilation in n-type InP homoepitaxial layers. Ferrari, C.; Franzosi, P. // Journal of Applied Physics;5/1/1996, Vol. 79 Issue 9, p6890 

    Presents information on a study that dealt with n-type silicon and tin-doped InP homoepitaxial layers grown on iron-doped semi-insulating InP substrates by metal organic vapor phase epitaxy and liquid phase epitaxy. Experimental procedure; Results and discussion on the study; Conclusions.

  • Structural and optical properties of GaInP grown on germanium by metal-organic chemical vapor deposition. He, W.; Lu, S. L.; Dong, J. R.; Zhao, Y. M.; Ren, X. Y.; Xiong, K. L.; Li, B.; Yang, H.; Zhu, H. M.; Chen, X. Y.; Kong, X. // Applied Physics Letters;9/20/2010, Vol. 97 Issue 12, p121909 

    Structural and optical properties of Si-doped as well as nominally undoped GaInP epilayers grown on Germanium substrates by metal-organic chemical vapor deposition have been investigated by high resolution transmission electron microscope and photoluminescence (PL). Si incorporation results in...

  • Flatness improvement of InP using phosphine modulation metalorganic chemical vapor deposition. Lee, M.K.; Hu, C.C. // Applied Physics A: Materials Science & Processing;1997, Vol. 64 Issue 6, p589 

    From observations with an atomic force microscope, the flatness of InP homoepitaxial layer is improved to atomic scale by phosphine modulation metalorganic chemical vapor deposition. A full width at half maximum of 5.6 meV for photoluminescence at 77 K can be achieved under optimum growth...

  • Identification of acceptors and donors in high-purity InP grown by metalorganic chemical vapor deposition. Uwai, Kunihiko; Yamada, Syoji; Takahei, Kenichiro // Journal of Applied Physics;2/1/1987, Vol. 61 Issue 3, p1059 

    Identifies acceptors and donors in high-purity indium phosphide grown by metal organic chemical vapor deposition (MOCVD). Electrical properties and identified impurities in MOCVD indium phosphide; Electron Hall mobilities at the epitaxial layers; Silicon accumulation near the epitaxial layer...

  • Comparison of the radiation resistance of electron irradiated indium phosphide grown by metal-organic chemical-vapor deposition and liquid encapsulated Czochralski. Thomas, H.; Luo, J. K. // Journal of Applied Physics;1/15/1995, Vol. 77 Issue 2, p620 

    Presents a study that compared the radiation resistance of electron irradiated indium phosphide grown by metal-organic chemical-vapor deposition and liquid encapsulated Czochralski. Experimental procedure; Results; Discussion.

  • Metalorganic chemical vapor deposition of indium phosphide by pulsing precursors. Chen, W. K.; Chen, J. C.; Anthony, L.; Liu, P. L. // Applied Physics Letters;9/4/1989, Vol. 55 Issue 10, p987 

    We have grown InP by supplying precursors alternately into the reactor of a metalorganic chemical vapor deposition system. Epitaxial growth has been obtained with a substrate temperature as low as 330 °C. The growth process is mass transport limited in the temperature range of 420–580...

  • Absence of 13C incorporation in 13CCl4-doped InP grown by metalorganic chemical vapor deposition. Cunningham, B. T.; Baker, J. E.; Stockman, S. A.; Stillman, G. E. // Applied Physics Letters;4/30/1990, Vol. 56 Issue 18, p1760 

    Intentional carbon doping of low-pressure metalorganic chemical vapor deposition (MOCVD) grown InP has been attempted with a 500 ppm mixture of 13CCl4 in high-purity H2, which has been used to obtain carbon-acceptor concentrations as high as 1×1019 cm-3 in GaAs. Under growth conditions...

  • InGaAsP laser with semi-insulating current confining layers. Dutta, N. K.; Zilko, J. L.; Cella, T.; Ackerman, D. A.; Shen, T. M.; Napholtz, S. G. // Applied Physics Letters;6/9/1986, Vol. 48 Issue 23, p1572 

    The fabrication and performance characteristics of a InGaAsP laser structure with semi-insulating current confining layers are reported. The semi-insulating layers are Fe-doped InP and are grown using the metalorganic chemical vapor deposition growth technique. The lasers have threshold currents...

  • Surface quantum wells. Cohen, R. M.; Kitamura, M.; Fang, Z. M. // Applied Physics Letters;6/8/1987, Vol. 50 Issue 23, p1675 

    Surface quantum wells of InP have been grown, by organometallic vapor phase epitaxy, on top of graded GaxIn1-xP epitaxial layers. The surface quantum well is confined on one side by vacuum, and on the other side by the graded GaxIn1-xP. Photoluminescence measurements show two transitions for...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics