TITLE

Epitaxial alignment of arsenic implanted polycrystalline silicon films on <100> silicon obtained by rapid thermal annealing

AUTHOR(S)
Hoyt, J. L.; Crabbé, E.; Gibbons, J. F.; Pease, R. F. W.
PUB. DATE
March 1987
SOURCE
Applied Physics Letters;3/23/1987, Vol. 50 Issue 12, p751
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
We have performed a quantitative analysis of epitaxial quality and arsenic diffusion in ion implanted polycrystalline silicon (polysilicon) layers on <100> Si, and find a clear advantage for the use of high-temperature rapid thermal annealing (RTA) in the 10-s regime to induce intentional, complete epitaxial alignment. The RTA-induced alignment kinetics and associated arsenic diffusion were studied in the 1050–1150 °C temperature range for arsenic doping concentrations between 1×1020 and 1×1021 cm-3, and were characterized by Rutherford backscattering, ion channeling, and cross-sectional transmission electron microscopy. The information about the relationship between arsenic diffusion, arsenic concentration, and epitaxial quality resulting from a given RTA cycle will be useful for optimizing bipolar transistors with realigned polysilicon emitter contacts.
ACCESSION #
9822440

 

Related Articles

  • Three-dimensional solid-phase-epitaxial regrowth from As+-implanted Si. Horiuchi, M.; Tamura, M.; Aoki, S. // Journal of Applied Physics;3/15/1989, Vol. 65 Issue 6, p2238 

    Investigates solid-phase-epitaxial (SPE) regrowth from selectively arsenic ion-implanted amorphous silicon. Procedures observed in sample preparation; Information on defect generated just beneath the implantation mask edge, in addition to end of range and projected range defects; Role played by...

  • In situ doping by As ion implantation of silicon grown by molecular-beam epitaxy. Denhoff, M. W.; Houghton, D. C.; Jackman, T. E.; Swanson, M. L.; Parikh, N. R. // Journal of Applied Physics;10/15/1988, Vol. 64 Issue 8, p3938 

    Presents a study that investigated the in situ doping by arsenic ion implantation of silicon grown by molecular beam epitaxy. Details of the experiment; Results and discussion.

  • Anomalous Behavior of Arsenic Ions Implanted into Silicon at 850°C. Demakov, K. D.; Starostin, V. A. // Technical Physics;Apr2001, Vol. 46 Issue 4, p490 

    The concentration profile of arsenic in silicon was found to have two peaks at large depths. An implantation model is suggested. A comparison with results for other species is made. It is shown that mechanisms behind low- and high-temperature migrations of defect-vacancy pairs are similar to...

  • New nondestructive depth profile measurement by using a refracted x-ray fluorescence method. Sasaki, Yuji C.; Hirokawa, Kichinosuke // Applied Physics Letters;4/1/1991, Vol. 58 Issue 13, p1384 

    Demonstrates the analysis of the nondestructive depth profile near the surface of As ion-implanted silicon substrate by using the refracted x-ray fluorescence method. Dependence of the angular distribution of the measured x-ray fluorescence on the surface roughness of the substrate.

  • Investigation of transient diffusion effects in rapid thermally processed ion implanted arsenic in silicon. Sedgwick, T. O.; Michel, A. E.; Cohen, S. A.; Deline, V. R.; Oehrlein, G. S. // Applied Physics Letters;10/15/1985, Vol. 47 Issue 8, p848 

    Arsenic dopant profile motion in ion implanted Si samples annealed for a few seconds at 1100 °C is adequately described by a model involving concentration enhanced diffusion. There is no evidence of an initial rapid diffusive transient. Diffusion in samples preannealed at 550 °C is...

  • Electronic transport investigations on silicon damaged by arsenic ion implantation. Jaouen, H.; Ghibaudo, G.; Christofidès, C. // Journal of Applied Physics;9/1/1986, Vol. 60 Issue 5, p1699 

    Describes the electronic transport properties of heavily doped arsenic implanted silicon. Limitations of ion implantation; Techniques that induce defect characterizations for several kinds of implantation; Effect of annealing on sheet resistance; Details of the main effects induced by ion...

  • Effects of arsenic concentration on the formation of dislocation loops near the projected ion range in high-dose As+-implanted (001) Si. Hsu, S. N.; Chen, L. J. // Applied Physics Letters;11/27/1989, Vol. 55 Issue 22, p2304 

    The formation of a two-layer structure and the inhibition of the formation of dislocation loops near the projected ion range (Rp ) have been observed by cross-sectional transmission electron microscopy in 80 keV, 1×1016 and 2×1016/cm2 As+-implanted (001) Si, respectively. The...

  • Disorder effects on optical spectra and band structure of Si induced by ion implantation. He, Xing-Fei; Jiang, Ren-Rong; Chen, Rui-Xiang; Mo, Dang // Journal of Applied Physics;12/1/1989, Vol. 66 Issue 11, p5261 

    Presents a study which examined the effects of both structural and substitutional disorder in arsenic[sup+]-implanted silicon on interband optical spectra. Details on ion implantation; Materials and methods used; Results and discussion.

  • Photothermoacoustic and photoelectric microscopy of silicon. Burbelo, R. M.; Kuz’mich, A. G.; Kucherov, I. Ya. // Semiconductors;Jun99, Vol. 33 Issue 6, p630 

    Combined photothermoacoustic and photoelectric microscopy is used to investigate silicon-based structures: an epitaxially grown n-type region in a p-type substrate, a p[sup -]p[sup +] interface obtained by implanting boron ions, and a region near a crack tip. It is concluded that the...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics