TITLE

High-efficiency carrier collection and stimulated emission in thin (50 Ã…) pseudomorphic InxGa1-xAs quantum wells

AUTHOR(S)
Anderson, N. G.; Lo, Y. C.; Kolbas, R. M.
PUB. DATE
September 1986
SOURCE
Applied Physics Letters;9/29/1986, Vol. 49 Issue 13, p758
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Efficient collection of photoexcited electrons and holes by thin, strained quantum wells is demonstrated in an In0.16Ga0.84As-GaAs pseudomorphic quantum well heterostructure laser. The undoped laser structure, which was grown by molecular beam epitaxy, consists of five 50 Å pseudomorphic In0.16Ga0.84As quantum wells separated by thick (700 Å), unstrained GaAs confining layers. Despite the fact that the quantum wells are undoped, decoupled, and of dimensions which are known to be too small to provide efficient carrier collection in unstrained AlxGa1-xAs-GaAs structures, 77 K photopumped laser operation is achieved on quantum well transitions (λ∼870 nm) at a threshold excitation intensity of 9.3×103 W/cm2. At photoexcitation intensities even as high as five times the threshold value, spontaneous emission from the quantum well is more than 700 times as intense as the confining layer luminescence. Based upon these photoluminescence results and some simple physical arguments, we suggest that carrier collection is enhanced in pseudomorphic quantum wells.
ACCESSION #
9820908

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics