Deep level defect study of molecular beam epitaxially grown silicon films

Xie, Y. H.; Wu, Y. Y.; Wang, K. L.
January 1986
Applied Physics Letters;1/27/1986, Vol. 48 Issue 4, p287
Academic Journal
We report the result of the study on the electrically active deep level defects in Si films grown by molecular beam epitaxy. A deep level defect at Ec-0.58 eV is consistently obtained for samples grown on substrates with purposely contaminated surfaces. The observed defects are all located within 3000–5000 Å of the epilayer-substrate interface with concentrations in or below 1014 cm-3 range. Secondary ion mass spectroscopic study results indicate the correlation between the substrate surface residual carbon concentration and the observed defect concentration. These defects appear to be higher order defects rather than the single level defects, as evidenced by the asymmetry of the deep level transient spectra. For samples grown on the substrates cleaned using an established surface cleaning method, no deep level defects within the detection limit (∼1012 cm-3 in our case) are observed.


Related Articles

  • Isotope-Pure Silicon Layers Grown by MBE. Godisov, O. N.; Kaliteevsky, A. K.; Safronov, A. Yu.; Korolev, V. I.; Ber, B. Ya.; Davydov, V. Yu.; Denisov, D. V.; Kaliteevsky, M. A.; Kop’ev, P. S.; Kovarsky, A. P.; Ustinov, V. M.; Pohl, H.-J. // Semiconductors;Dec2002, Vol. 36 Issue 12, p1400 

    Molecular-beam epitaxy with a solid source was used to grow silicon layers enriched with [sup 28]Si and [sup 30]Si isotopes to 99.93 and 99.34%, respectively. Secondary-ion mass spectrometry and Raman scattering spectroscopy were applied to demonstrate the high isotopic purity and crystal...

  • Special Features of the Sublimational Molecular-Beam Epitaxy of Si and Its Potentialities for Growing Si:Er/Si Structures. Kuznetsov, V. P.; Rubtsova, R. A. // Semiconductors;May2000, Vol. 34 Issue 5, p502 

    The concentration of charge carriers and their Hall mobility in Si:Er/Si layers grown by sublimational molecular-beam epitaxy were investigated as functions of temperature in the range of 300-77 K. No electric activity of Er-containing luminescent centers was observed. The feasibility of precise...

  • B doping using B[sub 2]H[sub 6] in gas source Si molecular beam epitaxy. Hirayama, Hiroyuki; Hiroi, Masayuki; Koyama, Kazuhisa // Applied Physics Letters;5/6/1991, Vol. 58 Issue 18, p1991 

    Reports that a gas mixing system was devised for the control of a gaseous dopant during gas source silicon molecular beam epitaxy. Demonstration of the performance of the gas mixing system using B[sub 2]H[sub 6] gas dopant for B doping; B-doping concentration.

  • 370 degrees C clean for Si molecular beam epitaxy using a HF dip. Eaglesham, D.J.; Higashi, G.S.; Cerullo, M. // Applied Physics Letters;8/5/1991, Vol. 59 Issue 6, p685 

    Demonstrates a low-temperature clean for Si molecular beam epitaxy. Low defect densities at 380 degree celsius; Occurrence of substrates transition from amorphous deposition to crystalline growth; Contamination levels at the substrate-epilayer interface to conventional chemical oxide desorption...

  • Surface reconstructions of Si(001) observed using reflection-high-energy-electron diffraction.... Mokler, S.M.; Liu, W.K.; Ohtani, N.; Joyce, B.A. // Applied Physics Letters;12/23/1991, Vol. 59 Issue 26, p3419 

    Investigates the growth of silicon (001) from a gas source molecular-beam epitaxy system using disilane. Occurrence of surface reconstructions; Formation of a three-dimensional surface; Calculation of the film thickness.

  • Influence of carbon incorporation on dopant surface segregation in molecular-beam epitaxial growth of silicon. Osten, H. J.; Lippert, G.; Liu, J. P.; Kru¨ger, D. // Applied Physics Letters;9/25/2000, Vol. 77 Issue 13 

    We describe the effect of carbon incorporation into Si on dopant surface segregation during molecular-beam epitaxial growth. Low concentration of carbon can significantly reduce the surface segregation of boron and phosphorus. Combining the surface diffusion model with a two-state exchange...

  • Properties of Si layers grown by molecular beam epitaxy at very low temperatures. Jorke, H.; Kibbel, H.; Schäffler, F.; Casel, A.; Herzog, H.-J.; Kasper, E. // Applied Physics Letters;2/27/1989, Vol. 54 Issue 9, p819 

    (100) silicon molecular beam epitaxy films with etch pit densities below 103 cm-2 and χmin values of 3.3–3.9% were grown at very low temperatures (Ts =250–350 °C). Although dopant activation is significantly below unity at n=1018 Sb atoms/cm3 Hall mobilities of homogeneously...

  • 5-THz bandwidth from a GaAs-on-silicon photoconductive receiver. Pedersen, J. Engholm; Keiding, S. Rud; So\rensen, C. B.; Lindelof, P. E.; Rühle, W. W.; Zhou, X. Q. // Journal of Applied Physics;12/1/1993, Vol. 74 Issue 11, p7022 

    Deals with a study which demonstrated that GaAs grown molecular beam epitaxy on silicon has ideal characteristics for terahertz (THz) receiver applications. Result of the lattice mismatch between silicon and GaAs; Use of THz pulses; Examples of the applications of THz pulses.

  • Reducing domain boundaries of surface reconstruction during molecular beam epitaxy on Si(111). Hibino, H.; Ogino, T. // Applied Physics Letters;8/14/1995, Vol. 67 Issue 7, p915 

    Reports the behavior of steps and out-of-phase boundaries (OPB) of reconstruction on Si(III) during silicon (Si) molecular beam epitaxy. Result of Si atoms' incorporation to the crystal at positions where steps are connected with OPB on the lower terraces; Effect of the heterogeneous...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics