Photopumped laser operation of GaAs doping superlattices

Vojak, B. A.; Zajac, G. W.; Chambers, F. A.; Meese, J. M.; Chumbley, P. E.; Kaliski, R. W.; Holonyak, N.; Nam, D. W.
January 1986
Applied Physics Letters;1/20/1986, Vol. 48 Issue 3, p251
Academic Journal
The photopumped laser operation of GaAs doping superlattices grown by molecular beam epitaxy is reported. As expected, laser emission is at lower energy than that of bulk undoped GaAs. This emission is attributed to donor to acceptor transitions that occur after the doping superlattice is excited to a flatband condition. Laser operation via electron to hole tunneling and recombination at lower energies, which requires extremely low thresholds, is not observed.


Related Articles

  • Effects of GaAs/AlAs superlattice buffer layers on selective area regrowth for GaAs/AlGaAs self-aligned structure lasers. Noda, Susumu; Fujiwara, Kenzo; Nakayama, Takashi // Applied Physics Letters;12/1/1985, Vol. 47 Issue 11, p1205 

    The effects of GaAs/AlAs superlattice buffer layers on selective area regrowth by molecular beam epitaxy were investigated for self-aligned structure lasers. It is demonstrated that the superlattice buffer layer is an effective means to obtain a smoother interface with reduced alloy clustering,...

  • GaAs sawtooth superlattice laser emitting at wavelengths λ>0.9 μm. Schubert, E. F.; Fischer, A.; Horikoshi, Y.; Ploog, K. // Applied Physics Letters;8/1/1985, Vol. 47 Issue 3, p219 

    A new type of semiconductor superlattice laser grown by molecular beam epitaxy is realized in GaAs. The active region of the injection laser consists of alternating n and p Dirac-delta doped layers resulting in a sawtooth-shaped conduction-band and valence-band edge. The band gap of this new...

  • Defect reduction in GaAs grown by molecular beam epitaxy using different superlattice structures. Bedair, S. M.; Humphreys, T. P.; El-Masry, N. A.; Lo, Y.; Hamaguchi, N.; Lamp, C. D.; Tuttle, A. A.; Dreifus, D. L.; Russell, P. // Applied Physics Letters;10/13/1986, Vol. 49 Issue 15, p942 

    Several superlattice structures, grown by molecular beam epitaxy, have been used to reduce the density of threading dislocations originating from the GaAs substrate. Results clearly indicate that compared to epitaxial layers grown directly on GaAs substrates, a GaAs-InxGa1-xAs superlattice...

  • High-resolution x-ray characterization of low-temperature GaAs/As superlattice grown by.... Cheng, T.M.; Chang, C.Y. // Applied Physics Letters;6/27/1994, Vol. 64 Issue 26, p3626 

    Investigates the high-resolution x-ray characterization of low-temperature (LT) gallium arsenide (GaAs)/As superlattice grown by molecular beam epitaxy. Evolution of the x-ray rocking curves; Provision of the semi-insulating property of LT material; Formation of the GaAs/As superlattice structure.

  • InGaP/GaAs superlattices grown by gas-source molecular beam epitaxy. Lee, H. Y.; Crook, M. D.; Hafich, M. J.; Quigley, J. H.; Robinson, G. Y.; Li, D.; Otsuka, N. // Applied Physics Letters;11/27/1989, Vol. 55 Issue 22, p2322 

    Lattice-matched InGaP/GaAs superlattices have been grown by gas-source molecular beam epitaxy. High-resolution images obtained with transmission electron microscopy reveal the superlattices to be free of dislocations and to exhibit smooth interfaces of only 1–2 monolayers in width. Double...

  • High-purity AlGaAs grown by molecular beam epitaxy using a superlattice buffer layer. Hayakawa, T.; Suyama, T.; Kondo, M.; Takahashi, K.; Yamamoto, S.; Yano, S.; Hijikata, T. // Journal of Applied Physics;12/1/1985, Vol. 58 Issue 11, p4452 

    Presents a study which investigated high-purity aluminum gallium arsenide grown by molecular beam epitaxy using a superlattice buffer layer. Method of the study; Results and discussion; Conclusion.

  • Molecular-beam-epitaxial growth and selected properties of GaAs layers and GaAs/(Al,Ga)As superlattices with the (211) orientation. Subbanna, Seshadri; Kroemer, Herbert; Merz, James L. // Journal of Applied Physics;1/15/1986, Vol. 59 Issue 2, p488 

    Investigates the molecular-beam-epitaxial growth and the properties of the gallium arsenide layers and gallium arsenid/(aluminum, gallium) arsenide superlattices with the (211) A and (211) B orientations rather than (100) orientation. Comparison of the growth morphologies between the (211)...

  • Critical steps in the molecular beam epitaxy of high quality Ag/Fe superlattices on (001) GaAs. Etienne, P.; Massies, J.; Nguyen-Van-Dau, F.; Barthélémy, A.; Fert, A. // Applied Physics Letters;11/20/1989, Vol. 55 Issue 21, p2239 

    It is shown that high quality Ag/Fe superlattices can be grown on (001) GaAs by molecular beam epitaxy, provided that adequate intermediate layers are interposed between the GaAs substrate and the superlattice structure. In addition to the growth of a GaAs buffer layer, a sufficiently thick Fe...

  • Relaxation of strain within multilayer InGaAs/GaAs pseudomorphic structures. Grey, R.; David, J. P. R.; Claxton, P. A.; Gonzalez Sanz, F.; Woodhead, J. // Journal of Applied Physics;7/15/1989, Vol. 66 Issue 2, p975 

    Reports on strained-layer superlattice (SLS) structures grown in InGaAs/GaAs with various gallium arsenide barrier layer thicknesses. Number of SLS structures grown by molecular-beam epitaxy; Data on photoluminescence as a function of barrier thickness.


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics