A 720 mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell

Yablonovitch, E.; Gmitter, T.; Swanson, R. M.; Kwark, Y. H.
December 1985
Applied Physics Letters;12/1/1985, Vol. 47 Issue 11, p1211
Academic Journal
For maximal performance solar cells should resemble semiconductor lasers, i.e., they should be constructed in the form of a double heterostructure. We have found rather good performance in SIPOS-crystalline silicon-SIPOS double heterostructure solar cells, where SIPOS≡SiOx. The processing of these solar cells gives insights into the truly outstanding performance of the n+-SIPOS: p-Si heterojunction which has a forward saturation current coefficient J0=10-14 A/cm2, or equivalently an ‘‘emitter Gummel number’’ Ge=3.3×1015 s/cm4. This suggests that crystalline silicon solar cells can be much more efficient than had been suspected.


Related Articles

  • Lasing in the Vertical Direction in InGaN/GaN/AlGaN Structures with InGaN Quantum Dots. Krestnikov, I. L.; Sakharov, A. V.; Lundin, W. V.; Musikhin, Yu. G.; Kartashova, A. P.; Usikov, A. S.; Tsatsul’nikov, A. F.; Ledentsov, N. N.; Alferov, Zh. I.; Soshnikov, I. P.; Hahn, E.; Neubauer, B.; Rosenauer, A.; Litvinov, D.; Gerthsen, D.; Plaut, A. C.; Hoffmann, A. A.; Bimberg, D. // Semiconductors;Apr2000, Vol. 34 Issue 4, p481 

    InGaN/GaN structures with dense arrays of InGaN nanodomains were grown by metallorganic chemical vapor deposition. Lasing in vertical direction occurs at low temperatures, indicating ultrahigh gains (∼10[sup 5] cm[sup -1]) in the active region. Fabrication of an effective AlGaN/GaN...

  • High Power InGaAsSb(Gd)/InAsSbP Double Heterostructure Lasers (λ = 3.3μm). Aydaraliev, M.; Zotova, N. V.; Karandashev, S. A.; Matveev, B. A.; Remennyi, M. A.; Stus’, N. M.; Talalakin, G. N. // Semiconductors;Oct2001, Vol. 35 Issue 10, p1208 

    InGaAsSb(Gd)/InAsSbP double heterostructure lasers (λ = 3.3 µm, T = 77 K) yield a multimode power of 1.56 W in pulsed operation (pulse width 30 µs, repetition frequency f=500 Hz) and 160 mW in the continuous-wave (CW) case. In the single-mode CW operation, the power is 18.7 mW. It is...

  • Internal Quantum Efficiency of Stimulated Emission of (λ = 1.55μm) InGaAsP/InP Laser Diodes. Skrynnikov, G. V.; Zegrya, G. G.; Pikhtin, N. A.; Slipchenko, S. O.; Shamakhov, V. V.; Tarasov, I. S. // Semiconductors;Feb2003, Vol. 37 Issue 2, p233 

    The stimulated emission (η[sup st, sub i]) of InGaAsP/InP separate-confinement double heterostructure lasers operating at λ = 1.5-1.6 µm has been studied experimentally and theoretically. Laser heterostructures with a varied design of the waveguide layer were grown by MOCVD. The maximum...

  • Periodic index separate confinement heterostructure InGaAs/AlGaAs multiple quantum well laser.... Hobson, W.S.; Wu, M.C. // Applied Physics Letters;2/3/1992, Vol. 60 Issue 5, p598 

    Examines the epitaxial growth of periodic index separate confinement heterostructure indium gallium arsenide/aluminum gallium arsenide multiple quantum well laser. Use of organometallic vapor phase epitaxy; Structural characterization using secondary ion mass spectrometry; Comparison with...

  • InAsSb/AlAsSb double-heterostructure diode lasers emitting at 4 mum. Eglash, S.J.; Choi, H.K. // Applied Physics Letters;2/14/1994, Vol. 64 Issue 7, p833 

    Fabricates a double-heterostructure indium arsenic antimonide/aluminum arsenic antimonide diode laser with an emission wavelength of four micrometer. Growth of laser structure on gallium antimonide by molecular beam epitaxy; Dependence of continuous wave operation and pulsed operation on...

  • Highly efficient multiple emitter index guided array lasers fabricated by silicon impurity induced disordering. Thornton, R. L.; Burnham, R. D.; Paoli, T. L.; Holonyak, N.; Deppe, D. G. // Applied Physics Letters;1/6/1986, Vol. 48 Issue 1, p7 

    We describe the fabrication of closely spaced arrays of buried heterostructure semiconductor lasers by the process of silicon impurity induced disordering. These devices have the low threshold currents which are associated with buried heterostructure lasers, as well as high overall device...

  • 2.2 μm GaInAsSb/AlGaAsSb injection lasers with low threshold current density. Caneau, C.; Zyskind, J. L.; Sulhoff, J. W.; Glover, T. E.; Centanni, J.; Burrus, C. A.; Dentai, A. G.; Pollack, M. A. // Applied Physics Letters;9/7/1987, Vol. 51 Issue 10, p764 

    Double heterostructure 2.2 μm wavelength lasers were fabricated from Ga0.84In0.16As0.15Sb0.85/ AlxGa1-xAs0.04Sb0.96 wafers grown by liquid phase epitaxy. These structures were grown with Al-rich confinement layers (x=0.4) for optical confinement and thin intermediate cladding layers (x=0.34)...

  • Lateral optical confinement of the heterostructure semiconductor Raman laser. Suto, K.; Kimura, T.; Nishizawa, J. // Applied Physics Letters;11/2/1987, Vol. 51 Issue 18, p1457 

    This letter describes the first lasing experiment of the heterostructure semiconductor Raman laser with lateral confinement of both the Stokes and pump fields. It has a GaP Raman active layer with thickness of 10 μm and Al0.1Ga0.9P cladding layers. The stripe of the active layer has been...

  • Reproducible liquid phase epitaxial growth of InGaAsP buried heterostructure lasers. Logan, R. A.; Temkin, H.; Blaha, J. P.; Strege, K. E. // Applied Physics Letters;11/2/1987, Vol. 51 Issue 18, p1407 

    Buried heterostructure lasers are formed using double heterostructure planar layers which are masked and etched to define laser mesas, with final regrowth by liquid phase epitaxy. Controlled melt etching of the exposed wafer surface is introduced just prior to the liquid phase epitaxial regrowth...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics