TITLE

Selective-area epitaxial growth of gallium arsenide on silicon substrates patterned using a scanning tunneling microscope operating in air

AUTHOR(S)
Dagata, J. A.; Tseng, W.; Bennett, J.; Evans, C. J.; Schneir, J.; Harary, H. H.
PUB. DATE
December 1990
SOURCE
Applied Physics Letters;12/3/1990, Vol. 57 Issue 23, p2437
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Selective-area epitaxial growth of gallium arsenide on n-Si(100) substrates is reported, where the oxide (SiOx) mask consists of 1–2 monolayer-thick features patterned onto a silicon substrate using a scanning tunneling microscope (STM) operating in air. The technique for generating the STM patterns on hydrogen-passivated silicon was reported recently [J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990)]. The GaAs epilayer was grown by migration-enhanced epitaxy at 580 °C and its morphology was investigated by scanning electron microscopy. The chemical selectivity of the STM-patterned regions was verified by imaging time-of-flight secondary-ion mass spectrometry. The implications of these results for the development of a unique, STM-based nanostructure fabrication technology are discussed.
ACCESSION #
9818165

 

Related Articles

  • Improvements in the heteroepitaxy of GaAs on Si. Lum, R. M.; Klingert, J. K.; Davidson, B. A.; Lamont, M. G. // Applied Physics Letters;7/6/1987, Vol. 51 Issue 1, p36 

    Successful application of GaAs on Si heteroepitaxy to majority-carrier device fabrication has recently been demonstrated. However, the quality of the GaAs heteroepitaxial films is considerably below that routinely achieved for films grown on GaAs substrates. We have investigated the initial...

  • Effect of in situ and ex situ annealing on dislocations in GaAs on Si substrates. Choi, C.; Otsuka, N.; Munns, G.; Houdre, R.; Morkoç, H.; Zhang, S. L.; Levi, D.; Klein, M. V. // Applied Physics Letters;4/13/1987, Vol. 50 Issue 15, p992 

    Gallium arsenide layers grown by molecular beam epitaxy on (100) Si substrates were subjected to annealing under As overpressure at 650, 750, and 850 °C for 1/2 h. A substantial reduction in the dislocation density near the interface and in the bulk of the epitaxial layers was observed for...

  • Microstructural characterization of patterned gallium arsenide grown on <001> silicon substrates. Matyi, R. J.; Shichijo, H.; Moore, T. M.; Tsai, H-L. // Applied Physics Letters;7/6/1987, Vol. 51 Issue 1, p18 

    The microstructure of patterned GaAs grown on Si substrates by molecular beam epitaxy has been examined with both transmission and scanning electron microscopies. The GaAs was found to be single crystal with excellent morphology to the limit of the plasma oxide defining mask. In samples where...

  • New approach to growth of high-quality GaAs layers on Si substrates. Varrio, J.; Asonen, H.; Salokatve, A.; Pessa, M.; Rauhala, E.; Keinonen, J. // Applied Physics Letters;11/30/1987, Vol. 51 Issue 22, p1801 

    GaAs films were grown by molecular beam epitaxy (MBE) on Si (100) substrates using a two-step growth process of a 300 °C GaAs buffer layer followed by a 600 °C device layer. The films were examined by Rutherford backscattering and x-ray diffraction methods. A significant reduction in the...

  • Investigation of Distribution and Redistribution of Silicon in Thin Doped Gallium-Arsenide Layers Grown by Molecular Beam Epitaxy on Substrates with (100), (111)Ga, and (111)As Orientations. Galiev, G. B.; Kaminskiı, V. É.; Mokerov, V. G.; Nevolin, V. K.; Saraıkin, V. V.; Slepnev, Yu. V. // Semiconductors;Jul2000, Vol. 34 Issue 7, p741 

    The distribution of silicon in GaAs was investigated by secondary-ion mass spectrometry (SIMS) before and after the thermal annealing of thin doped GaAs layers grown by molecular beam epitaxy on substrates with (100), (111)Ga, and (111)As orientations. The surface relief pattern of the grown...

  • Si diffusion and segregation in low-temperature grown GaAs. Kavanagh, K.L.; Chang, J.C.P.; Kirchner, P.D.; Warren, A.C.; Woodall, J.M. // Applied Physics Letters;1/18/1993, Vol. 62 Issue 3, p286 

    Investigates the silicon (Si)-doped low-temperature gallium arsenide (LT-GaAs) semiconductors by molecular beam epitaxy. Use of constant diffusion coefficients; Development of internal Si peaks; Accumulation of As precipitates near the undoped/doped LT-GaAs interface.

  • Highly doped GaAs:Si by molecular beam epitaxy. Sacks, Robert; Shen, H. // Applied Physics Letters;8/15/1985, Vol. 47 Issue 4, p374 

    Highly doped (N[sup ++]) GaAs:Si with n up to 1.8 × l0[sup 19] cm[sup -3] has been grown by molecular beam epitaxy at a "normal" growth rate of ∼0.8 m/h[sup -1]. These layers have been studied by Raman spectroscopy, van der Pauw-Hall measurements, and capacitance-voltage plotting. They...

  • Coherent Si growth on GaAs substrates by vapor phase deposition. Tamamura, K.; Akimoto, K.; Mori, Y. // Applied Physics Letters;1/23/1989, Vol. 54 Issue 4, p347 

    Epitaxial Si layers with low dislocation density were grown on GaAs substrates by pyrolysis using disilane. The dislocation density evaluated from SECCO etching (HF:H2 SO4 :K2 Cr2 O7 =100 cc:50 cc:2g) was less than 104/cm2, which is lower by two orders of magnitude than that of the GaAs layer on...

  • Photoreflectance measurements on Si δ-doped GaAs samples grown by molecular-beam epitaxy. Bernussi, A. A.; Iikawa, F.; Motisuke, P.; Basmaji, P.; Li, M. Siu; Hipolito, O. // Journal of Applied Physics;5/1/1990, Vol. 67 Issue 9, p4149 

    Presents a study that investigated silicon σ-doped gallium arsenide semiconductors grown by molecular beam epitaxy. Analysis of the photoreflectance spectra of the samples; Effect of silicon dopant concentration on the energy position of the samples; Examination of the temperature dependence...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics