TITLE

Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer

AUTHOR(S)
Zhang, H; Yu, C; Dai, J; Keller, J M; Hua, A; Sottnik, J L; Shelley, G; Hall, C L; Park, S I; Yao, Z; Zhang, J; McCauley, L K; Keller, E T
PUB. DATE
May 2014
SOURCE
Oncogene;5/8/2014, Vol. 33 Issue 19, p2464
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Prostate cancer (PCa)bone metastases are unique in that majority of them induce excessive mineralized bone matrix, through undefined mechanisms, as opposed to most other cancers that induce bone resorption. Parathyroid hormone-related protein (PTHrP) is produced by PCa cells and intermittent PTHrP exposure has bone anabolic effects, suggesting that PTHrP could contribute to the excess bone mineralization. Wnts are bone-productive factors produced by PCa cells, and the Wnt inhibitor Dickkopfs-1 (DKK1) has been shown to promote PCa progression. These findings, in conjunction with the observation that PTHrP expression increases and DKK1 expression decreases as PCa progresses, led to the hypothesis that PTHrP could be a negative regulator of DKK1 expression in PCa cells and, hence, allow the osteoblastic activity of Wnts to be realized. To test this, we first demonstrated that PTHrP downregulated DKK1 mRNA and protein expression. We then found through multiple mutated DKK1 promoter assays that PTHrP, through c-Jun activation, downregulated the DKK1 promoter through a transcription factor (TCF) response element site. Furthermore, chromatin immunoprecipitation (ChIP) and re-ChIP assays revealed that PTHrP mediated this effect through inducing c-Jun to bind to a transcriptional activator complex consisting of β-catenin, which binds the most proximal DKK1 promoter, the TCF response element. Together, these results demonstrate a novel signaling linkage between PTHrP and Wnt signaling pathways that results in downregulation of a Wnt inhibitor allowing for Wnt activity that could contribute the osteoblastic nature of PCa.
ACCESSION #
95905531

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics