TITLE

Primer evaluation and adaption for cost-efficient SYBR Green-based qPCR and its applicability for specific quantification of methanogens

AUTHOR(S)
Reitschuler, Christoph; Lins, Philipp; Illmer, Paul
PUB. DATE
January 2014
SOURCE
World Journal of Microbiology & Biotechnology;Jan2014, Vol. 30 Issue 1, p293
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
In the present study nine promising primer sets, targeting Archaea and methanogenic Archaea in particular, were evaluated in silico, in vitro and in situ concerning specificity, accuracy and applicability in end-point (ep-) and especially quantitative (q-)PCR research. The main goal was to adapt and evaluate already adapted primer sets, which were partially designed in combination with TaqMan probes, in substantially cheaper SYBR Green-based qPCR applications. An initial 16S rRNA gene bank-based in silico evaluation revealed high coverage potentials for all primers within targeted groups, ranging from 71 to 90 %, except the Methanosaeta specific set showing a low potential of 37 %. Mentionable cross-reacting potentials could be detected for the Methanothermobacter, Methanomicrobiales and Methanoculleus sets. The in vitro evaluation with selected reference organisms revealed a specific behavior for most primer sets, while the Methanosarcina and Methanothermobacter sets showed most problematic cross-reactions in epPCR application. We were able to show that primers for detecting the total archaeal community, methanogenic orders Methanosarcinales, Methanobacteriales, Methanococcales and the genus Methanoculleus performed in a highly specific way and allowed an accurate quantification of targeted organisms without the use of expensive TaqMan probes. However, primer pairs designed for detecting Methanomicrobiales, Methanothermobacter, Methanosarcina and Methanosaeta are not suitable for SYBR Green applications. The reliability of in situ quantifications was assessed for a typical methanogenic community, derived from a thermophilic fermenter, and confirmed via denaturing gradient gel band quantification and sequencing. Thereby, we revealed high abundances of methanogenic Archaea, mainly comprising Methanoculleus and Methanosarcinales, while Methanobacteriales only formed a minor fraction.
ACCESSION #
93434697

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics