TITLE

Preimplantation genetic diagnosis and sperm analysis by fluorescence in-situ hybridization for the most common reciprocal translocation t(11;22)

AUTHOR(S)
Van Assche, Elvire; Staessen, Catherine; Vegetti, Walter; Bonduelle, Maryse; Vandervorst, Marc; Steirteghem, André; Liebaers, Inge
PUB. DATE
July 1999
SOURCE
MHR: Basic Science of Reproductive Medicine;Jul99, Vol. 5 Issue 7, p682
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
In this study we describe the pre-clinical development and clinical application of preimplantation genetic diagnosis (PGD) by fluorescence in-situ hybridization (FISH) for two non-related carriers (one male and one female) of the most common balanced reciprocal translocation: t(11;22)(q25;q12). For the couple with the female carrier, enumeration of the sex chromosomes in the embryos was also indicated (husband: 47,XXY karyotype). Four-colour FISH analysis was performed on six blastomeres from three embryos. No embryo transfer was possible because all the embryos were unbalanced. Three PGD cycles, with two-colour FISH, were carried out for the couple with the male translocation carrier. A total of 35 embryos were biopsied and diagnosed by FISH; nine out of the 35 embryos (25.7%) were normal and seven of them were transferred (two embryos from the first and four from the third cycle), six out of 35 embryos (17%) were unbalanced, three out of 35 embryos (5.7%) were triploid or polyploid, 10 out of 35 embryos (28.6%) were mosaic and seven out of 35 embryos (20%) were chaotic. Diagnosis failed in 2.9% of the embryos. The spermatozoa of the male carrier were also analysed using three-colour FISH. Only 29.1% of the sperm cells seemed to be balanced or normal. By choosing probes lying on both sides of the breakpoints and by using a combination of sub-telomeric or locus-specific probes and centromeric probes, the use of three-colour FISH enabled detection of all the imbalances in sperm and/or cleavage-stage embryos in the patients. This may improve risk assessment and genetic counselling in the future for translocation carriers.
ACCESSION #
88056952

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics