TITLE

The Inverse F-BAR Domain Protein srGAP2 Acts through srGAP3 to Modulate Neuronal Differentiation and Neurite Outgrowth of Mouse Neuroblastoma Cells

AUTHOR(S)
Ma, Yue; Mi, Ya-Jing; Dai, Yun-Kai; Fu, Hua-Lin; Cui, Da-Xiang; Jin, Wei-Lin
PUB. DATE
March 2013
SOURCE
PLoS ONE;Mar2013, Vol. 8 Issue 3, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
The inverse F-BAR (IF-BAR) domain proteins srGAP1, srGAP2 and srGAP3 are implicated in neuronal development and may be linked to mental retardation, schizophrenia and seizure. A partially overlapping expression pattern and highly similar protein structures indicate a functional redundancy of srGAPs in neuronal development. Our previous study suggests that srGAP3 negatively regulates neuronal differentiation in a Rac1-dependent manner in mouse Neuro2a cells. Here we show that exogenously expressed srGAP1 and srGAP2 are sufficient to inhibit valporic acid (VPA)-induced neurite initiation and growth in the mouse Neuro2a cells. While ectopic- or over-expression of RhoGAP-defective mutants, srGAP1R542A and srGAP2R527A exert a visible inhibitory effect on neuronal differentiation. Unexpectedly, knockdown of endogenous srGAP2 fails to facilitate the neuronal differentiation induced by VPA, but promotes neurite outgrowth of differentiated cells. All three IF-BAR domains from srGAP1-3 can induce filopodia formation in Neuro2a, but the isolated IF-BAR domain from srGAP2, not from srGAP1 and srGAP3, can promote VPA-induced neurite initiation and neuronal differentiation. We identify biochemical and functional interactions of the three srGAPs family members. We propose that srGAP3-Rac1 signaling may be required for the effect of srGAP1 and srGAP2 on attenuating neuronal differentiation. Furthermore, inhibition of Slit-Robo interaction can phenocopy a loss-of-function of srGAP3, indicating that srGAP3 may be dedicated to the Slit-Robo pathway. Our results demonstrate the interplay between srGAP1, srGAP2 and srGAP3 regulates neuronal differentiation and neurite outgrowth. These findings may provide us new insights into the possible roles of srGAPs in neuronal development and a potential mechanism for neurodevelopmental diseases.
ACCESSION #
87679979

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics