Effect of the short collection length in silicon microscale wire solar cells

Kim, Hyunyub; Kim, Joondong; Lee, Eunsongyi; Kim, Dong-Wook; Yun, Ju-Hyung; Yi, Junsin
May 2013
Applied Physics Letters;5/13/2013, Vol. 102 Issue 19, p193904
Academic Journal
Electrical and optical properties of silicon microscale wire (SiMW) solar cells were investigated. Diverse designs were applied for SiMW geometries as light absorbers. Finite-difference time-domain simulation shows a focused optical field in the wires inducing an optical absorption enhancement in SiMW solar cells. SiMW solar cells provided remarkably higher Voc values (0.597-0.61 V) than that of the planar solar cell (0.587 V). As for the electrical aspects, the position of the space charge region in a SiMW directly affects the carrier collection efficiency according to the SiMW diameter and significantly modulates the photogenerated-currents and voltages in solar cells.


Related Articles

  • Effects of spacer thickness on quantum efficiency of the solar cells with embedded Ge islands in the intrinsic layer. Alguno, Arnold; Usami, Noritaka; Ujihara, Toru; Fujiwara, Kozo; Sazaki, Gen; Nakajima, Kazuo; Sawano, Kentaro; Shiraki, Yasuhiro // Applied Physics Letters;4/12/2004, Vol. 84 Issue 15, p2802 

    We report on the effects of spacer thickness on the external quantum efficiency (EQE) of the solar cells with Ge islands embedded into the intrinsic region of the Si-based p-i-n diode. The EQE response of the solar cells in the near-infrared region is dependent on the spacer thickness that...

  • Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers. Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori // Materials (1996-1944);Nov2010, Vol. 3 Issue 11, p4915 

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a...

  • Modeling of InGaN/Si tandem solar cells. Hsu, L.; Walukiewicz, W. // Journal of Applied Physics;Jul2008, Vol. 104 Issue 2, p024507 

    We investigate theoretically the characteristics of monolithic InGaN/Si two-junction series-connected solar cells using the air mass 1.5 global irradiance spectrum. The addition of an InGaN junction is found to produce significant increases in the energy conversion efficiency of the solar cell...

  • Temperature Dependent Current-voltage Characteristics of P-type Crystalline Silicon Solar Cells Fabricated Using Screen-printing Process. Hyun-Jin Song; Won-Ki Lee; Chel-Jong Choi // Journal of Energy Technologies & Policy;2013, Vol. 3 Issue 11, p27 

    We have fabricated p-type crystalline silicon (Si) solar cells using screen-printing process and investigated their electrical properties. Ph screen printing process led to the uniform formation of n+ emitter. As a result of interaction between Ph-dopant paste and Si substrate, a phosphosilicate...

  • 3-D Solar Cells Boost Efficiency, Reduce Size.  // Consulting-Specifying Engineer;Jun2007, Vol. 41 Issue 6, Special section p3 

    The article provides information on the capabilities of a 3-D solar cells. The solar cells capture photons from sunlight using an array of miniature tower structures that resemble high-rise buildings in a city street grid. The cells could find near-term applications for powering spacecraft, and...

  • Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Yongsheng Liu; Chun-Chao Chen; Ziruo Hong; Jing Gao; Yang Michael Yang; Huanping Zhou; Letian Dou; Gang Li; Yang Yang // Scientific Reports;11/29/2013, p1 

    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in...

  • Open-circuit voltage limit caused by recombination through tail states in bulk heterojunction polymer-fullerene solar cells. Garcia-Belmonte, Germà; Bisquert, Juan // Applied Physics Letters;3/15/2010, Vol. 96 Issue 11, p113301 

    The output open-circuit voltage of bulk heterojuntion polymer-fullerene solar cells exhibts an offset of Δ≈0.3 V with the difference between the donor highest-occupied molecular orbital (HOMO) and the acceptor lowest-unoccupied molecular orbital (LUMO), as discussed by Scharber et al....

  • Thienyl analog of 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene for bulk heterojunction photovoltaic devices in combination with polythiophenes. Popescu, Lacramioara M.; van ’t Hof, Patrick; Sieval, Alexander B.; Jonkman, Harry T.; Hummelen, Jan C. // Applied Physics Letters;11/20/2006, Vol. 89 Issue 21, p213507 

    An analog of 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene (PCBM) was designed with the aim of improving miscibility with polythiophene donors, especially poly(3-hexyl thiophene) (P3HT). In the title compound the phenyl group from PCBM is replaced by a thienyl group, it is named...

  • Mobility and fill factor correlation in geminate recombination limited solar cells. Andersson, L. Mattias; Müller, Christian; Badada, Bekele H.; Zhang, Fengling; Würfel, Uli; Inganäs, Olle // Journal of Applied Physics;Jul2011, Vol. 110 Issue 2, p024509 

    Empirical data for the fill factor as a function of charge carrier mobility for two different polymer:fullerene systems is presented and analyzed. The results indicate that charge extraction depth limitations and space charge effects are inconsistent with the observed behavior, and the decrease...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics