TITLE

Mechanism Study of Pulsus Paradoxus Using Mechanical Models

AUTHOR(S)
Xing, Chang-yang; Cao, Tie-sheng; Yuan, Li-jun; Wang, Zhen; Wang, Kun; Ren, Hua-ri; Yang, Yong; Duan, Yun-you
PUB. DATE
February 2013
SOURCE
PLoS ONE;Feb2013, Vol. 8 Issue 2, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Pulsus paradoxus is an exaggeration of the normal inspiratory decrease in systolic blood pressure. Despite a century of attempts to explain this sign consensus is still lacking. To solve the controversy and reveal the exact mechanism, we reexamined the characteristic anatomic arrangement of the circulation system in the chest and designed these mechanical models based on related hydromechanic principles. Model 1 was designed to observe the primary influence of respiratory intrathoracic pressure change (RIPC) on systemic and pulmonary venous return systems (SVR and PVR) respectively. Model 2, as an equivalent mechanical model of septal swing, was to study the secondary influence of RIPC on the motion of the interventriclar septum (IVS), which might be the direct cause for pulsus paradoxus. Model 1 demonstrated that the simulated RIPC had different influence on the simulated SVR and PVR. It increased the volume of the simulated right ventricle (SRV) when the internal pressure was kept constant (8.16 cmH2O), while it had the opposite effect on PVR. Model 2 revealed the three major factors determining the respiratory displacement of IVS in normal and different pathophysiological conditions: the magnitude of RIPC, the pressure difference between the two ventricles and the intrapericardial pressure. Our models demonstrate that the different anatomical arrangement of the two venous return systems leads to a different effect of RIPC on right and left ventricles, and thus a pressure gradient across IVS that tends to shift IVS left- and rightwards. When the leftward displacement of IVS reaches a considerable amplitude in some pathologic condition such as cardiac tamponade, the pulsus paradoxus occurs.
ACCESSION #
87625511

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics