TITLE

50nm-Scale Localization of Single Unmodified, Isotopically Enriched, Proteins in Cells

AUTHOR(S)
Delaune, Anthony; Cabin-Flaman, Armelle; Legent, Guillaume; Gibouin, David; Smet-Nocca, Caroline; Lefebvre, Fabrice; Benecke, Arndt; Vasse, Marc; Ripoll, Camille
PUB. DATE
February 2013
SOURCE
PLoS ONE;Feb2013, Vol. 8 Issue 2, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Imaging single proteins within cells is challenging if the possibility of artefacts due to tagging or to recognition by antibodies is to be avoided. It is generally believed that the biological properties of proteins remain unaltered when 14N isotopes are replaced with 15N. 15N-enriched proteins can be localised by dynamic Secondary Ion Mass Spectrometry (D-SIMS). We describe here a novel imaging analysis algorithm to detect a few 15N-enriched proteins - and even a single protein - within a cell using D-SIMS. The algorithm distinguishes statistically between a low local increase in 15N isotopic fraction due to an enriched protein and a stochastic increase due to the background. To determine the number of enriched proteins responsible for the increase in the isotopic fraction, we use sequential D-SIMS images in which we compare the measured isotopic fractions to those expected if 1, 2 or more enriched proteins are present. The number of enriched proteins is the one that gives the best fit between the measured and the expected values. We used our method to localise 15N-enriched thymine DNA glycosylase (TDG) and retinoid X receptor α (RXRα) proteins delivered to COS-7 cells. We show that both a single TDG and a single RXRα can be detected. After 4 h incubation, both proteins were found mainly in the nucleus; RXRα as a monomer or dimer and TDG only as a monomer. After 7 h, RXRα was found in the nucleus as a monomer, dimer or tetramer, whilst TDG was no longer in the nucleus and instead formed clusters in the cytoplasm. After 24 h, RXRα formed clusters in the cytoplasm, and TDG was no longer detectable. In conclusion, single unmodified proteins in cells can be counted and localised with 50 nm resolution by combining D-SIMS with our method of analysis.
ACCESSION #
87624721

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics