TITLE

Acclimation of Foliar Respiration and Photosynthesis in Response to Experimental Warming in a Temperate Steppe in Northern China

AUTHOR(S)
Chi, Yonggang; Xu, Ming; Shen, Ruichang; Yang, Qingpeng; Huang, Bingru; Wan, Shiqiang
PUB. DATE
February 2013
SOURCE
PLoS ONE;Feb2013, Vol. 8 Issue 2, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Background: Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. Methodology/Principal Findings: A field manipulative experiment was conducted to elevate foliar temperature (Tleaf) by 2.07°C in a temperate steppe in northern China. Rd/Tleaf curves (responses of dark respiration to Tleaf), An/Tleaf curves (responses of light-saturated net CO2 assimilation rates to Tleaf), responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (Ag) to Tleaf, and foliar nitrogen (N) concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year) and 2011 (a wet year). Significant thermal acclimation of Rd to 6-year experimental warming was found. However, An had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of Rd was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. Conclusions/Significance: Warming decreased the temperature sensitivity (Q10) of the response of Rd/Ag ratio to Tleaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.
ACCESSION #
87624651

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics