TITLE

On the Robustness of In- and Out-Components in a Temporal Network

AUTHOR(S)
Konschake, Mario; Lentz, Hartmut H. K.; Conraths, Franz J.; Hövel, Philipp; Selhorst, Thomas
PUB. DATE
February 2013
SOURCE
PLoS ONE;Feb2013, Vol. 8 Issue 2, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Background: Many networks exhibit time-dependent topologies, where an edge only exists during a certain period of time. The first measurements of such networks are very recent so that a profound theoretical understanding is still lacking. In this work, we focus on the propagation properties of infectious diseases in time-dependent networks. In particular, we analyze a dataset containing livestock trade movements. The corresponding networks are known to be a major route for the spread of animal diseases. In this context chronology is crucial. A disease can only spread if the temporal sequence of trade contacts forms a chain of causality. Therefore, the identification of relevant nodes under time-varying network topologies is of great interest for the implementation of counteractions. Methodology/Findings: We find that a time-aggregated approach might fail to identify epidemiologically relevant nodes. Hence, we explore the adaptability of the concept of centrality of nodes to temporal networks using a data-driven approach on the example of animal trade. We utilize the size of the in- and out-component of nodes as centrality measures. Both measures are refined to gain full awareness of the time-dependent topology and finite infectious periods. We show that the size of the components exhibit strong temporal heterogeneities. In particular, we find that the size of the components is overestimated in time-aggregated networks. For disease control, however, a risk assessment independent of time and specific disease properties is usually favored. We therefore explore the disease parameter range, in which a time-independent identification of central nodes remains possible. Conclusions: We find a ranking of nodes according to their component sizes reasonably stable for a wide range of infectious periods. Samples based on this ranking are robust enough against varying disease parameters and hence are promising tools for disease control.
ACCESSION #
87623642

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics