Generalizations of Prime Ideals of Semirings

Atani, Reza Ebrahimi
January 2013
Azerbaijan Journal of Mathematics;Jan2013, Vol. 3 Issue 1, p76
Academic Journal
In this paper, we analyze some properties and possible structures of almost prime ideals of a commutative semiring with non-zero identity.


Related Articles

  • A Note on Band Semirings. Zhengpan Wang; Yuanlan Zhou; Yuqi Guo // Semigroup Forum;Nov/Dec2005, Vol. 71 Issue 3, p439 

    The additive reduct of a band semiring is a regular band.

  • Generalized Derivations and Left Ideals in Prime and Semiprime Rings. Dhara, Basudeb; Pattanayak, Atanu // ISRN Algebra;2011, Special section p1 

    Let R be an associative ring, λ a nonzero left ideal of R, d : R → R a derivation and G : R → R a generalized derivation. In this paper, we study the following situations in prime and semiprime rings: (1) G (x o y) = a(xy ± yx); (2) G[x, y] = a(xy ± yx); (3) d(x) o d(y) =...

  • On Exact Sequence of Semimodules over Semirings. Ninu Chaudhari, Jayprakash; Ravindra Bonde, Dipak // ISRN Algebra;2013, p1 

    We introduce the notion of exact sequence of semimodules over semirings using maximal homomorphisms and generalize some results of module theory to semimodules over semirings. Indeed, we prove, "If 0 → Lf → Mg → N → 0 is a split exact sequence of R-semimodules and...

  • Weakly Special Radical Class and Special Radical Class of Ternary Semirings. Dutta, Tapan K.; Kar Ping Shum; Mandal, Shobhan // European Journal of Pure & Applied Mathematics;2012, Vol. 5 Issue 4, p401 

    In this paper, we consider the weakly special radical classes and special radical classes of ternary semirings. Some of our results are similar to those in rings theory as well as in semiring theory. In particular, the upper radicals of the above two classes are determined.

  • A Zariski Topology For Semimodules. Atani, Shahabaddin Ebrahimi; Atani, Reza Ebrahimi; Tekir, �nsal // European Journal of Pure & Applied Mathematics;2011, Vol. 4 Issue 3, p251 

    Given a very strong multiplication semimidule M over a commutative semiring R, a Zariski topology is defined on the spectrum Speck(M) of prime k-subsemimodules of M. The properties and possible structures of this topology are studied.

  • Köthe's upper nil radical for modules. Groenewald, N.; Ssevviiri, D. // Acta Mathematica Hungarica;Mar2013, Vol. 138 Issue 4, p295 

    Let M be a left R-module. In this paper a generalization of the notion of an s-system of rings to modules is given. Let N be a submodule of M. Define $\mathcal{S}(N):=\{ {m\in M}:\, \mbox{every } s\mbox{-system containing } m \mbox{ meets}~N \}$. It is shown that $\mathcal{S}(N)$ is equal to the...

  • Almost Graded Prime Ideals. Jaber, Ameer; Bataineh, Malik; Khashan, Hani // Journal of Mathematics & Statistics;2008, Vol. 4 Issue 4, p232 

    Problem Statement: Graded commutative ring with unity over an abelian group were introduced by many authors such as T. Y. Lam and C. T. C. Wall, and almost prime ideals over commutative rings with unity were introduced by S.M. Batwadeker and P.K. Sharma, and this forced us to try to extend the...

  • On the Structure of Commutative Rings with p1k1...pnkn (1⩽ki⩽7) Zero-Divisors II. Behboodi, M.; Beyranvand, R. // European Journal of Pure & Applied Mathematics;2010, Vol. 3 Issue 4, p686 

    In this paper, we determine the structure of nonlocal commutative rings with p6 zerodivisors and characterize the structure of nonlocal commutative rings with p7 zero-divisors. Also, the structure and classification up to isomorphism all commutative rings with p1 k1 . . . pn kn zero-divisors,...

  • A scheme over prime spectrum of modules. ABBASI, Ahmad; HASSANZADEH LELEKAMI, Dawood // Turkish Journal of Mathematics;Mar2013, Vol. 37 Issue 2, p202 

    Let R be a commutative ring with nonzero identity and let M be an R-module with X = Spec (M). It is introduced a scheme OX on the prime spectrum of M and some of its properties have been investigated.


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics