TITLE

Co-expression analysis identifies putative targets for CBP60g and SARD1 regulation

AUTHOR(S)
Truman, William; Glazebrook, Jane
PUB. DATE
January 2012
SOURCE
BMC Plant Biology;2012, Vol. 12 Issue 1, p216
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Background: Salicylic acid is a critical signalling component in plant defence responses. In Arabidopsis, isochorismate synthase encoded by SID2 is essential for the biosynthesis of salicylic acid in response to biotic challenges. Recently, both the calmodulin binding protein CBP60g and its closest homolog, the non-calmodulin binding SARD1, have been shown to bind to the promoter region of SID2. Loss of both CBP60g and SARD1 severely impacts the plants ability to produce SA in response to bacterial inoculation and renders the plant susceptible to infection. In an electrophoretic mobility shift assay CBP60g and SARD1 were shown to bind specifically to a 10mer oligonucleotide with the sequence GAAATTTTGG. Results: Gene expression profiling on a custom microarray identified a set of genes, like SID2, down-regulated in cbp60g sard1 mutant plants. Co-expression analysis across a defined set of ATH1 full genome microarray experiments expanded this gene set; clustering analysis was then applied to group densely interconnected genes. A stringent threshold for co-expression identified two related calmodulin-like genes tightly associated with SID2. SID2 was found to cluster with genes whose promoter regions were significantly enriched with GAAATT motifs. Genes clustering with SID2 were found to be down-regulated in the cbp60g sard1 double mutant. Representative genes from other clusters enriched with the GAAATT motif were found to be variously down-regulated, unchanged or up-regulated in the double mutant. A previously characterised co-expression between SID2 and WRKY28 was not reproduced in this analysis but was contained within a subset of the experiments where SID2 was co-expressed with CBP60g or SARD1. Conclusion: Putative components of the CBP60g SARD1 signalling network have been uncovered by co-expression analysis. In addition to genes whose regulation is similar to that of SID2 some are repressed by CBP60g and SARD1.
ACCESSION #
84355485

 

Related Articles

  • Gene coding for SigA-binding protein from Arabidopsis appears to be transcriptionally up-regulated by salicylic acid and NPR1-dependent mechanisms. Narusaka, Mari; Kawai, Kiyoshi; Izawa, Norihiko; Seki, Motoaki; Shinozaki, Kazuo; Seo, Shigemi; Kobayashi, Masatomo; Shiraishi, Tomonori; Narusaka, Yoshihiro // Journal of General Plant Pathology;Oct2008, Vol. 74 Issue 5, p345 

    SigA-binding protein (SIB A) is a nuclear-encoded chloroplast-targeted protein that interacts with the plastid-encoded plastid RNA polymerase σ-factor SigA (Sig1). In this study, the SIB A gene responded rapidly to salicylic acid (SA) treatment, but responded slowly to ethylene (ET) and...

  • WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes. van Verk, Marcel C; Bol, John F.; Linthorst, Huub J. M. // BMC Plant Biology;2011, Vol. 11 Issue 1, p89 

    Background: Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR). The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA). An important step in SA biosynthesis in...

  • The unusual Arabidopsis extensin gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses. Georgios Merkouropoulos; Anil H. Shirsat // Planta;Jul2003, Vol. 217 Issue 3, p356 

    We detail the expression of the Arabidopsis thaliana (L.) Heynh. atExt1 extensin gene. atExt1 is normally expressed in roots and inflorescences, and is induced by wounding, exogenously supplied salicylic acid, methyl jasmonate, auxins and brassinosteroids. Northern assays and histochemical...

  • Genomic Survey of Gene Expression Diversity in Arabidopsis thaliana. Kliebenstein, Daniel J.; West, Marilyn A. L.; Van Leeuwen, Hans; Kyunga Kim; Doerge, R. W.; Michelmore, Richard W.; Clair, Dina A. St. // Genetics;Feb2006, Vol. 172 Issue 2, p1179 

    Differential gene expression controls variation in numerous plant traits, such as flowering time and plant/pest interactions, but little is known about the genomic distribution of the determinants of transcript levels and their associated variation. Affymetrix ATH1 GeneChip microarrays...

  • Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Acharya, Sefali; Ranjan, Rajiv; Pattanaik, Sitakanta; Maiti, Indu; Dey, Nrisingha // Planta;Feb2014, Vol. 239 Issue 2, p381 

    In the present study, we developed a set of three chimeric/hybrid promoters namely FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt incorporating different important domains of Figwort Mosaic Virus sub-genomic transcript promoter (FSgt, −270 to −60), Mirabilis Mosaic Virus sub-genomic transcript...

  • Functional analysis of the theobroma cacao NPR1 gene in arabidopsis. Zi Shi; Maximova, Siela N.; Yi Liu; Verica, Joseph; Guiltinan, Mark J. // BMC Plant Biology;2010, Vol. 10, p248 

    Background: The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1) that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA) accumulation, NPR1 translocates from the cytoplasm into the...

  • Overexpression of LcSABP , an Orthologous Gene for Salicylic Acid Binding Protein 2, Enhances Drought Stress Tolerance in Transgenic Tobacco. Li, Qian; Wang, Gang; Guan, Chunfeng; Yang, Dan; Wang, Yurong; Zhang, Yue; Ji, Jing; Jin, Chao; An, Ting // Frontiers in Plant Science;2/21/2019, pN.PAG 

    Salicylic acid (SA) plays an essential role in the growth and development of plants, and in their response to abiotic stress. Previous studies have mostly focused on the effects of exogenously applied SA on the physiological response of plants to abiotic stresses; however, the underlying genetic...

  • A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants. Wang, Dong; Amornsiripanitch, Nita; Xinnian Dong // PLoS Pathogens;Nov2006, Vol. 2 Issue 11, p1042 

    Many biological processes are controlled by intricate networks of transcriptional regulators. With the development of microarray technology, transcriptional changes can be examined at the whole-genome level. However, such analysis often lacks information on the hierarchical relationship between...

  • Genetic Dissection of Salicylic Acid-Mediated Defense Signaling Networks in Arabidopsis. Ng, Gina; Seabolt, Savanna; Zhang, Chong; Salimian, Sasan; Watkins, Timley A.; Lu, Hua // Genetics;Nov2011, Vol. 189 Issue 3, p851 

    Properly coordinated defense signaling networks are critical for the fitness of plants. One hub of the defense networks is centered on salicylic acid (SA), which plays a key role in activating disease resistance in plants. However, while a number of genes are known to affect SA-mediated defense,...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics