# Numerical test of Kramers reaction rate theory in two dimensions

## Related Articles

- Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential. Aydoğdu, O.; Sever, R. // European Physical Journal A -- Hadrons & Nuclei;Jan2010, Vol. 43 Issue 1, p73
The Dirac equation is solved approximately for the Woods-Saxon potential and a tensor potential with the arbitrary spin-orbit coupling quantum number $ \kappa$ under pseudospin and spin symmetry. The energy eigenvalues and the Dirac spinors are obtained in terms of hypergeometric functions. The...

- A TWELFTH-ORDER FOUR-STEP FORMULA FOR THE NUMERICAL INTEGRATION OF THE ONE-DIMENSIONAL SCHRÃ–DINGER EQUATION. Wang, Zhongcheng; Dai, Yongming // International Journal of Modern Physics C: Computational Physics;Oct2003, Vol. 14 Issue 8, p1087
A new twelfth-order four-step formula containing fourth derivatives for the numerical integration of the one-dimensional SchrÃ¶dinger equation has been developed. It was found that by adding multi-derivative terms, the stability of a linear multi-step method can be improved and the interval of...

- VIBRATIONAL SPECTRUM FOR THE LINEAR LATTICE CHAIN GAINED BY VIRTUE OF THE "INVARIANT EIGEN-OPERATOR" METHOD. FAN, HONG-YI; WU, HAO; XU, XUE-FEN // International Journal of Modern Physics B: Condensed Matter Phys;10/30/2005, Vol. 19 Issue 27, p4073
We propose an operator Hamiltonian (a ring of identically coupled harmonic oscillators) to describe the linear lattice chain with Bornâ€“von Karmann boundary condition. We apply the method of "invariant eigen-operator" to study this Hamiltonian and derive its invariant eigen-operator. The...

- MOTION OF MASSIVE AND MASSLESS TEST PARTICLES IN DYADOSPHERE GEOMETRY. RAYCHAUDHURI, B.; RAHAMAN, F.; KALAM, M.; GHOSH, A. // Modern Physics Letters A;5/30/2009, Vol. 24 Issue 16, p1277
Motion of massive and massless test particle in equilibrium and nonequilibrium case is discussed in a dyadosphere geometry through Hamiltonâ€“Jacobi method. Scalar wave equation for massless particle is analyzed to show the absence of superradiance in the case of dyadosphere geometry.

- A new water potential including polarization: Application to gas-phase, liquid, and crystal properties of water. Cieplak, Piotr; Kollman, Peter; Lybrand, Terry // Journal of Chemical Physics;6/1/1990, Vol. 92 Issue 11, p6755
We present a new set of potential function parameters for simulations involving water. This function has been used to calculate the energy and structure of water dimer, the second virial coefficient of gaseous water, the energy and density of liquid water, and the structural parameters and...

- ON THE INVERSE RESONANCE PROBLEM. B. M. BROWN; I. KNOWLES; R. WEIKARD // Journal of the London Mathematical Society;Oct2003, Vol. 68 Issue 2, p383
A new technique is presented which gives conditions under which perturbations of certain base potentials are uniquely determined from the location of eigenvalues and resonances in the context of a SchrÃ¶dinger operator on a half line. The method extends to complex-valued potentials and certain...

- Fourier Series Representation of Low-Lying Eigenfunctions for a Particle on the Torus. Encinosa, Mario; Etemadi, Babak // Foundations of Physics Letters;Aug2003, Vol. 16 Issue 4, p403
A Fourier series method for finding the low-lying eigenfunctions and eigenvalues of the SchrÃ¶dinger equation for a particle on the surface of a torus is given.

- Fourier Series Representation of Low-Lying Eigenfunctions for a Particle on the Torus. Encinosa, Mario; Etemadi, Babak // Foundations of Physics Letters;Aug2003, Vol. 16 Issue 4, p403
A Fourier series method for finding the low-lying eigenfunctions and eigenvalues of the SchrÃ¶dinger equation for a particle on the surface of a torus is given.

- Removable singularities for solutions of coupled Yang-Mills-Dirac equations. Li, Wei // Journal of Mathematical Physics;Oct2006, Vol. 47 Issue 10, p103502
We prove a removable singularity theorem for solutions of coupled Yang-Mills-Dirac equations on compact four-dimensional manifolds. We show that a field satisfying the coupled equations with a point singularity is gauge equivalent to a smooth field if the energy functional is finite. The...