# Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces

## Related Articles

- Generalization of a theorem on Besov-Nikol’skiÄ classes. SZAL, B. // Acta Mathematica Hungarica;Oct2009, Vol. 125 Issue 1/2, p161
A new class of rest bounded second variation sequences is introduced. Leindlerâ€™s result [7] for such wider class of sequences is proved.

- Beyond Besov Spaces, Part 2: Oscillation Spaces. Jaffard, St�phane // Constructive Approximation;2005, Vol. 21 Issue 1, p29
We study several extensions of Besov spaces; these extensions include the oscillation spaces Ops,sï¿½which take into account correlations between the positions of large wavelet coefficients through the scales and, more generally, spaces defined through the distributions of suprema of wavelet...

- DUNKL TRANSFORM ON BESOV SPACES AND HERZ SPACES. Abdelkefi, Chokri // Communications in Mathematical Analysis;2007, Vol. 2 Issue 2, p35
In this paper, we establish on â„d that the Dunkl transform maps the Besov spaces into a class of Herz spaces.

- Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces by Differences. Drihem, Douadi // Journal of Function Spaces & Applications;2012, p1
We present characterizations of the Besov-type spaces Bp,qs,t and the Triebel-Lizorkin-type spaces Fp,qs,t by differences. All these results generalize the existing classical results on Besov and Triebel- Lizorkin spaces by taking t = 0.

- A Limit Theorem for Integral Functionals of an Extremum of Independent Random Processes. Matsak, I. // Ukrainian Mathematical Journal;Feb2005, Vol. 57 Issue 2, p250
We prove a theorem on the convergence of integral functionals of an extremum of independent stochastic processes to a degenerate law of distributions.

- Sequences of some meromorphic function spaces. Ahmed, A. El-Sayed; Bakhit, M. A. // Bulletin of the Belgian Mathematical Society - Simon Stevin;Aug2009, Vol. 16 Issue 3, p395
Our goal in this paper is to introduce some new sequences of some meromorphic function spaces, which will be called bq and qK-sequences. Our study is motivated by the theories of normal, QK# and meromorphic Besov functions. For a non-normal function f the sequences of points {an} and {bn} for...

- Invariance of the White Noise for KdV. Oh, Tadahiro // Communications in Mathematical Physics;Nov2009, Vol. 292 Issue 1, p217
We prove the invariance of the mean 0 white noise for the periodic KdV. First, we show that the Besov-type space $${\widehat{b}^s_{p,\infty}}$$ , sp < -1, contains the support of the white noise. Then, we prove local well-posedness in $${\widehat{b}^s_{p, \infty}}$$ for p = 2 + , $${s =...

- A Schrï¿½dinger Operator with Point Interactions on Sobolev Spaces. Albeverio, Sergio; Nizhnik, Leonid // Letters in Mathematical Physics;Dec2004, Vol. 70 Issue 3, p185
Schrï¿½dinger operators on Sobolev spaces are considered as new solvable models with point interactions. A simple formula for the deficiency indices of a minimal Schrï¿½dinger operator with point interactions is given. Examples of point interactions on the space W21(3) are constructed.

- On the Global Wellposedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations. Jean-Yves Chemin; Ping Zhang // Communications in Mathematical Physics;May2007, Vol. 272 Issue 2, p529
Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations ( NS ?) with initial data in the scaling invariant Besov space, $$\mathcal{B}^{-1+\frac3p}_{p,\infty},$$ here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations ( ANS ?), where...