TITLE

Ab initio molecular dynamics with correlated molecular wave functions: Generalized valence bond molecular dynamics and simulated annealing

AUTHOR(S)
Hartke, Bernd; Carter, Emily A.
PUB. DATE
November 1992
SOURCE
Journal of Chemical Physics;11/1/1992, Vol. 97 Issue 9, p6569
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
We present an ab initio molecular dynamics algorithm at the generalized valence bond level. It does not need a precalculated potential energy surface or model Hamiltonian; instead the nuclei move according to first principles forces derived from the electronic wave function which in turn follows the movement of the nuclei. This technique includes the dominant static electron correlations, it can treat ground and excited many-electron states, and it can describe chemical bond formation and breaking qualitatively correctly. We apply the method to Na4, as a generic test example for small metal clusters, and show spin-dependent free dissociation dynamics as well as geometry optimization by simulated annealing. The latter involves novel boundary conditions to prevent dissociation and mass scaling to enhance performance.
ACCESSION #
7619588

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics