TITLE

Ultrafast optical response originating from carrier-transport processes in undoped GaAs/n-type GaAs epitaxial structures

AUTHOR(S)
Hasegawa, Takayuki; Takagi, Yoshihiro; Takeuchi, Hideo; Yamada, Hisashi; Hata, Masahiko; Nakayama, Masaaki
PUB. DATE
May 2012
SOURCE
Applied Physics Letters;5/21/2012, Vol. 100 Issue 21, p211902
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
We have investigated ultrafast optical responses of undoped GaAs/n-type GaAs (i-GaAs/n-GaAs) epitaxial structures at room temperature using a reflection-type pump-probe technique. The built-in electric field in the i-GaAs layer is controlled by its thickness. It is found that the decay time of a photoexcitation-induced reflectivity change in a sub-picosecond range decreases with an increase in the built-in electric field strength. The observed optical response is related to the transport process of photogenerated carriers from the i-GaAs layer to the n-GaAs layer. The shortest response time about 60 fs demonstrates that the i-GaAs/n-GaAs structure is useful for ultrafast optical applications.
ACCESSION #
76143315

 

Related Articles

  • Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability. Tai, K.; Tomita, A.; Jewell, J. L.; Hasegawa, A. // Applied Physics Letters;8/4/1986, Vol. 49 Issue 5, p236 

    We report the generation of 0.5 ps full width at half-maximum optical pulses at >0.3 THz (tunable) repetition rate via an induced modulational instability in a single-mode fiber. A 1.319-μm neodymium:yttrium aluminum garnet laser is chosen as the carrier wave and the initial modulation on...

  • Ultrashort phenomena. Alfano, Robert R.; Shapiro, Stanley L. // Physics Today;Jul75, Vol. 28 Issue 7, p30 

    Discusses some research on the applications of ultrashort pulses. Applications in biophysics; Practical applications in plasma physics; Applications in solid state physics.

  • Generation of 290 fs laser pulses by self-seeding and soliton compression. Huhse, D.; Reimann, O. // Applied Physics Letters;10/25/1999, Vol. 75 Issue 17, p2530 

    Reports that self-seeding with subsequent chirp compensation presents a simple way to generate pulses of a few picoseconds width tunable over more than 30 nm. Generation of laser pulses with a full width at half maximum of less than 300 fs caused by compression of the laser pulses exploiting...

  • Measurement of pulse lengthening with pulse energy increase in picosecond Nd:YAG laser pulses. Cutolo, Antonello; Zeni, Luigi; Berardi, Vincenzo; Bruzzese, Riccardo; Solimeno, Salvatore; Spinelli, Nicola // Journal of Applied Physics;3/15/1989, Vol. 65 Issue 6, p2187 

    Examines the relative variations of time duration and mode size as a function of the pulse energy for 30 picosecond laser pulses. Key parameters of the active-passive mode-locked neodymium: yttrium aluminum garnet laser system used in the study; Description of the observed pulsed time duration...

  • Giant half-cycle attosecond pulses. Wu, H.-C.; Meyer-ter-Vehn, J. // Nature Photonics;May2012, Vol. 6 Issue 5, p304 

    Half-cycle picosecond pulses have been produced from thin photoconductors when applying an electric field across the surface and switching on conduction using a short laser pulse. The transverse current in the wafer plane then emits half-cycle pulses in a normal direction, and pulses of 500 fs...

  • Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Gusev, Vitalyi E.; Ruello, Pascal // Applied Physics Reviews;2018, Vol. 5 Issue 3, pN.PAG 

    Time-domain Brillouin scattering is an all-optical experimental technique based on ultrafast lasers applied for generation and detection of coherent acoustic pulses on time durations of picoseconds and length scales of nanometers. In transparent materials, scattering of the probe laser beam by...

  • Measurement of picosecond semiconductor laser pulse duration with internally generated second harmonic emission. Chen, Y. C.; Liu, J. M. // Applied Physics Letters;10/1/1985, Vol. 47 Issue 7, p662 

    We demonstrate a simple practical technique for the measurement of the duration of picosecond semiconductor laser pulses using the internally generated second harmonic emission accompanying the laser output. The pulse duration is determined by the ratio of the conversion efficiencies of the...

  • One-dimensional simulations of ultrashort intense laser pulses on solid-density tragets. Lawson, William S.; Rambo, Peter W.; Larson, David J. // Physics of Plasmas;Mar1997, Vol. 4 Issue 3, p788 

    Examines the interaction of a high-power ultrashort pulse laser beam with a solid-density target at normal incidence. Simulations in one dimension of laser pulses with pre-ionized thin target; Duration of the laser pulse; Factors that influence the absorption mechanism for a normally incident...

  • Picosecond time-resolved x-ray refectivity of a laser-heated amorphous carbon film. Nüske, R.; Jurgilaitis, A.; Enquist, H.; Farahani, S. Dastjani; Gaudin, J.; Guerin, L.; Harb, M.; Schmising, C. v. Korff; Störmer, M.; Wulff, M.; Larsson, J. // Applied Physics Letters;3/7/2011, Vol. 98 Issue 10, p101909 

    We demonstrate thin film x-ray reflectivity measurements with picosecond time resolution. Amorphous carbon films with a thickness of 46 nm were excited with laser pulses characterized by 100 fs duration, a wavelength of 800 nm, and a fluence of 70 mJ/cm2. The laser-induced stress caused a rapid...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics