TITLE

Malleability and Versatility of Cytochrome P450 Active Sites Studied by Molecular Simulations

AUTHOR(S)
Oostenbrink, Chris; De Ruiter, Anita; Hritz, Jozef; Vermeulen, Nico
PUB. DATE
February 2012
SOURCE
Current Drug Metabolism;Feb2012, Vol. 13 Issue 2, p190
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
As the most important phase I drug metabolizing enzymes, the human Cytochromes P450 display an enormous versatility in the molecular structures of possible substrates. Individual isoforms may preferentially bind specific classes of molecules, but also within these classes, some isoforms show remarkable levels of promiscuity. In this work, we try to link this promiscuity to the versatility and malleability of the active site at the hand of examples from our own work. Mainly focusing on the flexibility of protein structures and the presence or absence of water molecules, we establish molecular reasons for observed promiscuity, determine the relevant factors to take into account when predicting binding poses and rationalize the role of individual interactions in the process of ligand binding. A high level of active site flexibility does not only allow for the binding of a large variety of substrates and inhibitors, but also appears to be important to facilitate ligand binding and unbinding.
ACCESSION #
72885385

 

Related Articles

  • Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Cojocaru, Vlad; Winn, Peter J.; Wade, Rebecca C. // Current Drug Metabolism;Feb2012, Vol. 13 Issue 2, p143 

    The active site of liver-specific, drug-metabolizing cytochrome P450 (CYP) monooxygenases is deeply buried in the protein and is connected to the protein surface through multiple tunnels, many of which were found open in different CYP crystal structures. It has been shown that different tunnels...

  • Dynamics and Hydration of the Active Sites of Mammalian Cytochromes P450 Probed by Molecular Dynamics Simulations. Hendrychová, Tereza; Berka, Karel; Navrátilová, Veronika; Anzenbacher, Pavel; Otyepka, Michal // Current Drug Metabolism;Feb2012, Vol. 13 Issue 2, p177 

    The flexibility, active site volume, solvation, and access path dynamics of six metabolically active mammalian cytochromes P450 (human 2A6, 2C9, 2D6, 2E1, 3A4 and rabbit 2B4) are extensively studied using molecular dynamics (MD) simulations. On average, the enzymes' overall structures...

  • Plasticity of CYP2B Enzymes: Structural and Solution Biophysical Methods. Wilderman, P. Ross; Halpert, James R. // Current Drug Metabolism;Feb2012, Vol. 13 Issue 2, p167 

    In the past three years, major advances in understanding cytochrome P450 2B (CYP2B) structure-function relationships have been made through determination of multiple ligand-bound and one ligand-free X-ray crystal structure of CYP2B4 and one ligand-bound X-ray crystal structure of CYP2B6. These...

  • The Role of Protein Plasticity in Computational Rationalization Studies on Regioselectivity in Testosterone Hydroxylation by Cytochrome P450 BM3 Mutants. De Beer, Stephanie B. A.; Van Bergen, Laura A. H.; Keijzer, Karlijn; Rea, Vanina; Venkataraman, Harini; Guerra, Célia Fonseca; Bickelhaupt, F. Matthias; Vermeulen, Nico P.E.; Commandeur, Jan N.M.; Geerke, Daan P. // Current Drug Metabolism;Feb2012, Vol. 13 Issue 2, p155 

    Recently, it was found that mutations in the binding cavity of drug-metabolizing Cytochrome P450 BM3 mutants can result in major changes in regioselectivity in testosterone (TES) hydroxylation. In the current work, we report the intrinsic reactivity of TES' C-H bonds and our attempts to...

  • Molecular modeling and identification of substrate binding site of orphan human cytochrome P450 4F22. Kumar, Suresh // Bioinformation;2011, Vol. 7 Issue 4, p207 

    Cytochrome P450s are superfamily of heme proteins which generally monooxygenate hydrophobic compounds. The human cytochrome P450 4F22 (CYP4F22) was categorized into "orphan" CYPs because of its unknown function. CYP4F22 is a potential drug target for cancer therapy. However, three-dimensional...

  • Identification of Selectivity Determinants in CYP Monooxygenases by Modelling and Systematic Analysis of Sequence and Structure. Seifert, Alexander; Pleiss, Jürgen // Current Drug Metabolism;Feb2012, Vol. 13 Issue 2, p197 

    Cytochrome P450 monooxygenases (CYPs) form a large, ubiquitous enzyme family and are of great interest in red and white biotechnology. To investigate the effect of protein structure on selectivity, the binding of substrate molecules near to the active site was modelled by molecular dynamics...

  • Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics. Wang, Kai; Chodera, John; Yang, Yanzhi; Shirts, Michael // Journal of Computer-Aided Molecular Design;Dec2013, Vol. 27 Issue 12, p989 

    We present a method to identify small molecule ligand binding sites and poses within a given protein crystal structure using GPU-accelerated Hamiltonian replica exchange molecular dynamics simulations. The Hamiltonians used vary from the physical end state of protein interacting with the ligand...

  • Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements. Liu, Jin; Tawa, Gregory J.; Wallqvist, Anders // PLoS ONE;Dec2013, Vol. 8 Issue 12, p1 

    Cytochrome P450 (CYP) enzymes play key roles in drug metabolism and adverse drug-drug interactions. Despite tremendous efforts in the past decades, essential questions regarding the function and activity of CYPs remain unanswered. Here, we used a combination of sequence-based co-evolutionary...

  • A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes. Lonsdale, Richard; Rouse, Sarah L.; Sansom, Mark S. P.; Mulholland, Adrian J. // PLoS Computational Biology;Jul2014, Vol. 10 Issue 7, p1 

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics