Kousalya Devi, S.; Gayathri, B.
July 2010
Bulletin of Pure & Applied Sciences-Mathematics;2010, Vol. 29E Issue 2, p387
Academic Journal
In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [2], Gayathri et al., introduced the even edge-graceful graphs. In [8], Sin-Min Lee, introduced the k-edge graceful graphs. In [3], we introduced k-even edgegraceful graphs. In this paper, we investigate the k-even edge-gracefulness of the graph Pn @ K1,m.


Related Articles

  • THE CONNECTED FORCING CONNECTED VERTEX DETOUR NUMBER OF A GRAPH. Santhakumaran, A. P.; Titus, P. // Discussiones Mathematicae: Graph Theory;2011, Vol. 31 Issue 3, p461 

    For any vertex x in a connected graph G of order p ≥ 2, a set S of vertices of V is an x-detour set of G if each vertex v in G lies on an x-y detour for some element y in S. A connected x-detour set of G is an x-detour set S such that the subgraph G[S] induced by S is connected. The...

  • ON A GRAPH RELATED TO THE MAXIMAL SUBGROUPS OF A GROUP. Herzog, Marcel; Longobardi, Patrizia; Maj, Mercede // Bulletin of the Australian Mathematical Society;Apr2010, Vol. 81 Issue 2, p317 

    Let G be a finitely generated group. We investigate the graph GM(G), whose vertices are the maximal subgroups of G and where two vertices M1 and M2 are joined by an edge whenever M1 n M2 ?1. We show that if G is a finite simple group then the graph GM(G) is connected and its diameter is 62 at...

  • On edge neighborhood graphs-II. Alsardary, Salar Y.; All, Ali A.; Balasubramanian, K. // Azerbaijan Journal of Mathematics;Jul2012, Vol. 2 Issue 2, p78 

    Let G be an undirected, simple, connected graph e and e = uv be an edge of G: Let NG(e) be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to at least one end vertex of e. Ne is the class of all graphs H such that, for some graph G, NG(e)...

  • PARTITIONING A GRAPH INTO A DOMINATING SET, A TOTAL DOMINATING SET, AND SOMETHING ELSE.  // Discussiones Mathematicae: Graph Theory;2010, Vol. 30 Issue 4, p563 

    No abstract available.

  • EFFICIENT (j; k)-DOMINATION. Rubalcaba, Robert R.; Slater, Peter J. // Discussiones Mathematicae: Graph Theory;2007, Vol. 27 Issue 3, p409 

    A dominating set S of a graph G is called efficient if |N[?] nS| = 1 for every vertex ? ... V(G). That is, a dominating set S is efficient if and only if every vertex is dominated exactly once. In this paper, we investigate efficient multiple domination. There are several types of multiple...

  • On trees with double domination number equal to the 2-outer-independent domination number plus one. Krzywkowski, Marcin // Chinese Annals of Mathematics;Jan2012, Vol. 33 Issue 1, p113 

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G, such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double...

  • ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER. Ulatowski, Włodzimierz // Opuscula Mathematica;2013, Vol. 33 Issue 4, p763 

    Let G = (V;E) be a graph with no isolated vertices. A set S ⊆ V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum...

  • Global neighbourhood domination. S. V. Siva Rama Raju; I. H. Nagaraja Rao // Proyecciones - Journal of Mathematics;Mar2014, Vol. 33 Issue 1, p25 

    A subset of vertices of a graph is called a global neighbourhood dominating set(gnd - set) if is a dominating set for both and G and GN, where GNis the neighbourhood graph of G. The global neighbourhood domination number(gnd - number) is the minimum cardinality of a global neighbourhood...

  • Global Strong Defensive Alliances of SierpiÅ„ski-Like Graphs. Lin, Chien-Hung; Liu, Jia-Jie; Wang, Yue-Li // Theory of Computing Systems;Oct2013, Vol. 53 Issue 3, p365 

    A strong alliance in a graph G=( V, E) is a set of vertices S⊆ V satisfying the condition that, for each v∈ S, the number of its neighbors, including itself, in S is greater than the number of those neighbors not in S. A strong alliance S is global if S forms a dominating set of G. In...


Read the Article

Courtesy of AIRBUS FRANCE S.A.S.

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics