TITLE

Phenotypic Differentiation without Permanent Cell-Cycle Arrest by Skeletal Myocytes with Deregulated E2F-1

AUTHOR(S)
Chen, Gang; Lee, Eva Y.-H.P.
PUB. DATE
April 1999
SOURCE
DNA & Cell Biology;Apr99, Vol. 18 Issue 4, p305
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Skeletal muscle terminal differentiation includes expression of muscle cell-specific proteins and concomitant cell-cycle arrest. These two processes require functional retinoblastoma protein (RB). E2F-1 is an RB-associated transcriptional factor and an effector of RB in the regulation of G1 to S-phase transition. Here, we show that proper regulation of E2F-1 is crucial for differentiation-coupled cell-cycle arrest by skeletal myocytes. On induction to differentiate, C2 myoblasts constitutively expressing E2F-1 synthesized muscle cell-specific proteins, fused into myotubes, and upregulated the cdk inhibitor p21. However, unlike control cells, differentiated myocytes expressing exogenous E2F-1 incorporated bromodeoxyuridine into nuclei, indicating S-phase entry. This S-phase entry was accompanied by expression of cyclin A. Our results support the view that RB regulates cell-cycle arrest and muscle cell differentiation through separable mechanisms.
ACCESSION #
6462985

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics