TITLE

A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field

AUTHOR(S)
Wittneven, Chr.; Dombrowski, R.; Pan, S.H.; Wiesendanger, R.
PUB. DATE
October 1997
SOURCE
Review of Scientific Instruments;Oct97, Vol. 68 Issue 10, p3806
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Discusses the design of a low-temperature ultrahigh-vacuum scanning tunneling microscope setup with a combination of a solenoid and a split-pair magnet. Operation of the scanning tunneling microscope at temperatures down to 8K and in a rotatable magnetic field of up to 1 T; Topographic and spectroscopic measurements on p-InAs(110).
ACCESSION #
627496

 

Related Articles

  • A combined apparatus of scanning reflection electron microscope and scanning tunneling microscope. Maruno, S.; Nakahara, H.; Fujita, S.; Watanabe, H.; Kusumi, Y.; Ichikawa, M. // Review of Scientific Instruments;Jan1997, Vol. 68 Issue 1, p116 

    Describes the design and construction of a scanning reflection electron microscope combined with a scanning tunneling microscope (STM) for the purpose of nanoscale structure fabrication under ultrahigh vacuum conditions. Structure of the apparatus; STM images; Surface-sensitive elemental...

  • Concentric tube scanning tunneling microscope. Snyder, C. W.; de Lozanne, A. L. // Review of Scientific Instruments;Apr88, Vol. 59 Issue 4, p541 

    A small scanning tunneling microscope (STM) for studying surfaces in ultrahigh vacuum is described. It has been designed to have a mechanical tip-sample gap instability of less than 0.002 A while operating in an environment with relatively large-amplitude, low-frequency vibrations. Thermal...

  • Simple, compact implementation of a beetle-type scanning tunneling microscope for low temperature... Silva, L.A. // Review of Scientific Instruments;Feb1997, Vol. 68 Issue 2, p1300 

    Focuses on the compact implementation of a beetle-type scanning tunneling microscope for low temperature ultrahigh vacuum applications. Achievement of cooling by the transfer of a cryogenic fluid from an external commercial Dewar flasks; Details of the microscope operation.

  • Cryogenic variable temperature ultrahigh vacuum scanning tunneling microscope. Foley, E. T.; Foley, E.T.; Kam, A. F.; Kam, A.F.; Lyding, J. W.; Lyding, J.W. // Review of Scientific Instruments;Sep2000, Vol. 71 Issue 9 

    A cryogenic variable temperature ultrahigh vacuum (UHV) scanning tunneling microscope (STM) has been developed. This design utilizes a novel vibration isolation that provides an active thermal link to the cooling source without the standard tradeoff of compromising mechanical isolation. A welded...

  • Development of an ultrahigh vacuum scanning tunneling microscope cooled by superfluid [sup 4]He. Kondo, Y.; Foley, E. T.; Amakusa, T.; Shibata, N.; Chiba, S.; Iwatsuki, M.; Tokumoto, H. // Review of Scientific Instruments;Jul2001, Vol. 72 Issue 7, p2977 

    We have developed an ultrahigh vacuum (UHV) scanning tunneling microscope (STM) cooled by superfluid [sup 4]He. This microscope is integrated with a solenoid and split-pair superconducting magnet. The STM can be operated at 300>T>4 K in a rotatable magnetic field of up to 8 T perpendicular to,...

  • An improved control technique for the electrochemical fabrication of scanning tunneling microscopy microtips Hu Xiaotang; Liu Wenhui; Ji Guijun; Liu Anwei // Review of Scientific Instruments;Oct97, Vol. 68 Issue 10, p3811 

    Presents an improved feedback control technique for the direct current (dc) electrochemical fabrication of scanning tunneling microscopy microtips. Use of the etching current as the only control signal; Electrochemical etching process; Differential feedback control method.

  • Simple, variable-temperature, scanning tunneling microscope. Dubson, M. A.; Hwang, Jeeseong // Review of Scientific Instruments;Jul1992, Vol. 63 Issue 7, p3643 

    We describe a simple scanning tunneling microscope (STM) which works well from room temperature to 4 K. It is relatively easy to build, repair, or modify, and works very reliably. An unusual feature of our STM is that it is assembled without glues or solders. A list of suppliers of the...

  • A [sup 3]He refrigerated scanning tunneling microscope in high magnetic fields and ultrahigh vacuum. Kugler, M.; Renner, Ch.; Fischer, O&slash;.; Mikheev, V.; Batey, G. // Review of Scientific Instruments;Mar2000, Vol. 71 Issue 3 

    We present a scanning tunneling microscope (STM) designed to operate between 275 mK and room temperature, in magnetic fields up to 14 T and in ultrahigh vacuum (UHV). The system features a compact STM connected to an UHV compatible [sup 3]He refrigerator fitting into a bottom loading cryostat...

  • Reliable and versatile scanning tunneling microscope. Kaiser, W. J.; Jaklevic, R. C. // Review of Scientific Instruments;Apr88, Vol. 59 Issue 4, p537 

    A new scanning tunneling microscope (STM) system is described that has been operated in several environments for both topographic imaging and tunnel spectroscopy. This STM shows high resistance to the effects of vibration and thermal drift. The device is unique in its simplicity and has only...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics