Status of the VIRGO experiment

Marion, Fre´de´rique
June 2000
AIP Conference Proceedings;2000, Vol. 523 Issue 1, p110
Academic Journal
The status of the VIRGO experiment as of fall 1999 is presented here: progress in the construction is reported and next steps are outlined. © 2000 American Institute of Physics.


Related Articles

  • Status of the Australian Consortium for Interferometric Gravitational Astronomy. McClelland, D. E.; Gray, M. B.; Shaddock, D. A.; Slagmolen, B. J.; Scott, S. M.; Charlton, P.; Whiting, B. J.; Sandeman, R. J.; Blair, D. G.; Ju, L.; Winterflood, J.; Greenwood, D.; Benabid, F.; Baker, M.; Zhou, Z.; Mudge, D.; Ottaway, D.; Ostermeyer, M.; Veitch, P. J.; Munch, J. // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p140 

    We report progress on the development of gravitational wave research facilities by the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) and significant R&D advances across the four major subsystems related to an interferometric gravitational wave detector:...

  • TAMA project: Design and current status. Ando, Masaki; Tsubono, Kimio // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p128 

    Examines the design and status of TAMA, a project to construct and operate an interferometric gravitational-wave detector in Tokyo, Japan. Development of techniques for large-scale interferometers; Detection of gravitational waves generated within the galaxy; Details on the target strain...

  • The status of GEO600. Lu¨ck, Harald; Aufmuth, P.; Brozek, O. S.; Danzmann, K.; Freise, A.; Goßler, S.; Grado, A.; Grote, H.; Mossavi, K.; Quetschke, V.; Willke, B.; Kawabe, K.; Ru¨diger, A.; Schilling, R.; Winkler, W.; Zhao, Ch.; Strain, K. A.; Cagnoli, G.; Casey, M.; Hough, J. // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p119 

    GEO600, the German/British gravitational wave detector currently being built in northern Germany, used advanced optical technologies to obtain a sensitivity comparable with the other, bigger detectors currently being built [1,2]. The installation of the ultra-high-vacuum system has almost been...

  • The Glasgow 10 m prototype laser interferometric gravitational wave detector. Robertson, D.I.; Morrison, E.; Hough, J.; Killbourn, S.; Meers, B.J.; Newton, G.P.; Robertson, N.A.; Strain, K.A.; Ward, H. // Review of Scientific Instruments;Sep95, Vol. 66 Issue 9, p4447 

    Presents a description of the prototype interferometric gravitational wave detector at Glasgow. General overview of the apparatus and its mode of operation; Technical features of the instrument; Main optical components of the detector.

  • Estimation of thermal noise in the mirrors of laser interferometric gravitational wave detectors:... Nakagawa, N.; Auld, B.A.; Gustafson, Eric; Fejer, M.M. // Review of Scientific Instruments;Sep97, Vol. 68 Issue 9, p3553 

    Presents a general formula and a computational scheme for estimating the power spectrum of the displacement correlation function of suspended test masses such as those used in interferometric gravitational wave detectors. Application of the fluctuation-dissipation theorem directly to the...

  • LIGO end-to-end simulation program. Bhawal, B.; Cella, G.; Evans, M.; Klimenko, S.; Maros, E.; Mohanty, S. D.; Rakhmanov, M.; Savage, R. L.; Yamamoto, H. // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p469 

    A time-domain simulation program has been developed to provide an accurate description of interferometric gravitational wave detectors. This is being utilized to build a model of LIGO with the aim of aiding in the shakedown and integration of the interferometer subsystems, and ultimately the...

  • A quantum-enhanced prototype gravitational-wave detector. Goda, K.; Miyakawa, O.; Mikhailov, E. E.; Saraf, S.; Adhikari, R.; McKenzie, K.; Ward, R.; Vass, S.; Weinstein, A. J.; Mavalvala, N. // Nature Physics;Jun2008, Vol. 4 Issue 6, p472 

    The quantum nature of the electromagnetic field imposes a fundamental limit on the sensitivity of optical precision measurements such as spectroscopy, microscopy and interferometry. The so-called quantum limit is set by the zero-point fluctuations of the electromagnetic field, which constrain...

  • Invited Review Article: Interferometric gravity wave detectors. Cella, G.; Giazotto, A. // Review of Scientific Instruments;Oct2011, Vol. 82 Issue 10, p101101 

    A direct detection of gravitational waves is still lacking today. A network of several earthbound interferometric detectors is currently operating with a continuously improving sensitivity. The window of interest for observation has a lower cut off in the frequency domain below some tens of...

  • The Virgo Detector. Acernese, F.; Amico, P.; Al-Shourbagy, M.; Aoudia, S.; Avino, S.; Babusci, D.; Ballardin, G.; Barillé, R.; Barone, F.; Barsotti, L.; Barsuglia, M.; Beauville, F.; Bizouard, M. A.; Boccara, C.; Bondu, F.; Bosi, L.; Bradaschia, C.; Braccini, S.; Brillet, A.; Brisson, V. // AIP Conference Proceedings;2005, Vol. 794 Issue 1, p307 

    The Virgo Experiment is a gravitational wave interferometric detector. It consists in a Michelson interferometer with two 3 km long Fabry-Perot cavities as orthogonal arms. The installation of the detector has been completed in September 2003 and presently the apparatus is under commissioning....


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics