Proposed experiment on a controlled orbital mass

Lett, Thomas E.
January 2000
AIP Conference Proceedings;2000, Vol. 504 Issue 1, p1218
Academic Journal
The experiment should determine whether a toroid orbital mass could be used in a propulsion system. The experiment would prove or disprove that a mass ring, or toroid, would exhibit displacement in a gravity field due to its velocity. If the results are positive, a vehicle could be produced for continuous use with relatively low energy consumption. The purpose for this proposed experiment is to open discussion and pursue a fundamental change in man’s view of how objects behave in space. © 2000 American Institute of Physics.


Related Articles

  • Three-dimensional time optimal double angular momentum reversal trajectory using solar sails. Zeng, Xiangyuan; Baoyin, Hexi; Li, Junfeng; Gong, Shengping // Celestial Mechanics & Dynamical Astronomy;Dec2011, Vol. 111 Issue 4, p415 

    A new concept of three dimensional non-Keplerian trajectories with double angular momentum reversal is investigated with high performance solar sails. The main discussion of this paper is about such 3D solar inverse orbits with inner constraints. The problem is addressed in a time optimal...

  • NASA studies thermal upper stage. Proctor, Paul // Aviation Week & Space Technology;9/15/1997, Vol. 147 Issue 11, p71 

    Focuses on the efforts of the US National Aeronautics and Space Administration (NASA) to investigate solar thermal propulsion to help reduce space vehicle weights, complexity and cost. Initial trials of prototype engine hardware planned for the fall of 1997; Description of the flight...

  • Cutting costs in space propulsion. Lardier, Christian // Interavia Business & Technology;Jun/Jul96, Vol. 51 Issue 601, p46 

    Reports that the continuing quest to reduce space vehicles launching cost brings United States and Russian propulsion specialists together. American specialists development of cryogenic designs; Europe cross-border alliance on civil space programs; Possible venture in propulsion in France;...

  • Hypersonic personal space travel.  // Futurist;Nov/Dec95, Vol. 29 Issue 6, p40 

    Reports that researchers at Rensselaer Polytechnic Institute are testing a propulsion system, known as Air Spike, designed to dramatically increase a spacecraft's speed while eliminating bulky, dangerous tanks of chemical fuel. Features of the Air Spike; Hypersonic shock-tunnel tests; Three...

  • Utilizing fission technology to enable rapid and affordable access to any point in the solar system. Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Dobson, Chris; Patton, Bruce; Martin, James; Chakrabarti, Suman // AIP Conference Proceedings;2000, Vol. 504 Issue 1, p1182 

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances...

  • Engine-3E, Germany's advanced technology propulsion programme. Steffens, Klaus // Interavia Business & Technology;May98, Vol. 53 Issue 620, p30 

    Focuses on a German propulsion research program called Engine-3E. Development of technologies to reduce fuel consumption, pollutants and noise emissions; Compressor technology; Turbine technology.

  • Lasers could boost rockets into orbit.  // Current Science;11/28/97, Vol. 82 Issue 7, p12 

    Looks at a propulsion system test conducted by scientist. Details on how the test was conducted; What the test demonstrated; Comments from June Malone, a spokeswoman for the United States Advanced Space Transportation Program; Circumstances surrounding the launching of vehicles into orbit.

  • Ion Dynamic Capture Experiments with the High Performance Antiproton Trap (HiPAT). Martin, James; Lewis, Raymond; Chakrabarti, Suman; Sims, William H.; Pearson, J. Boise; Fant, Wallace E. // AIP Conference Proceedings;2003, Vol. 654 Issue 1, p563 

    To take the first step towards using the energy produced from the matter-antimatter annihilation for propulsion applications, the NASA Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) has initiated a research activity examining the storage of low energy antiprotons. The High...

  • 100 MW 1.6-μm Pr+3:LaCl3 Propulsion Laser Pumped by a Nuclear-Pumped He/Ar/Xe Laser. Boody, Frederick P. // AIP Conference Proceedings;2003, Vol. 664 Issue 1, p634 

    A 20kHz, 100-MW average power, pulsed 1.6-μm Pr[SUP+3]:LaCl[SUB3] up-conversion laser for space propulsion, pumped at high intensity by a continuous 212-MW, 2.026-μm He/Ar/Xe nuclear-pumped laser, is proposed. 1.6 μm falls within the 1.72μm>λ> 1.53 μm atmospheric transmission...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics