IEC fusion: The future power and propulsion system for space

Hammond, Walter E.; Coventry, Matt; Hanson, John; Hrbud, Ivana; Miley, George H.; Nadler, Jon
January 2000
AIP Conference Proceedings;2000, Vol. 504 Issue 1, p1572
Academic Journal
Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production. © 2000 American Institute of Physics.


Related Articles

  • Evaluation of a fusion-driven thruster for interplanetary and earth-to-orbit flight. Froning, H. D.; Watrus, John J.; Frese, Michael H.; Gerwin, Richard A. // AIP Conference Proceedings;2000, Vol. 504 Issue 1, p1431 

    Investigations performed under a NASA Small Business Independent Research (SBIR) Phase I Award have shown that hydrogen propellant heating from fusion energy on the order of a few 10[sup 14] W/kg, corresponding to power absorption rates of a few GW, can produce on the order of 100 kN of thrust...

  • NASA studies thermal upper stage. Proctor, Paul // Aviation Week & Space Technology;9/15/1997, Vol. 147 Issue 11, p71 

    Focuses on the efforts of the US National Aeronautics and Space Administration (NASA) to investigate solar thermal propulsion to help reduce space vehicle weights, complexity and cost. Initial trials of prototype engine hardware planned for the fall of 1997; Description of the flight...

  • Cutting costs in space propulsion. Lardier, Christian // Interavia Business & Technology;Jun/Jul96, Vol. 51 Issue 601, p46 

    Reports that the continuing quest to reduce space vehicles launching cost brings United States and Russian propulsion specialists together. American specialists development of cryogenic designs; Europe cross-border alliance on civil space programs; Possible venture in propulsion in France;...

  • Hypersonic personal space travel.  // Futurist;Nov/Dec95, Vol. 29 Issue 6, p40 

    Reports that researchers at Rensselaer Polytechnic Institute are testing a propulsion system, known as Air Spike, designed to dramatically increase a spacecraft's speed while eliminating bulky, dangerous tanks of chemical fuel. Features of the Air Spike; Hypersonic shock-tunnel tests; Three...

  • Utilizing fission technology to enable rapid and affordable access to any point in the solar system. Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Dobson, Chris; Patton, Bruce; Martin, James; Chakrabarti, Suman // AIP Conference Proceedings;2000, Vol. 504 Issue 1, p1182 

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances...

  • Engine-3E, Germany's advanced technology propulsion programme. Steffens, Klaus // Interavia Business & Technology;May98, Vol. 53 Issue 620, p30 

    Focuses on a German propulsion research program called Engine-3E. Development of technologies to reduce fuel consumption, pollutants and noise emissions; Compressor technology; Turbine technology.

  • Lasers could boost rockets into orbit.  // Current Science;11/28/97, Vol. 82 Issue 7, p12 

    Looks at a propulsion system test conducted by scientist. Details on how the test was conducted; What the test demonstrated; Comments from June Malone, a spokeswoman for the United States Advanced Space Transportation Program; Circumstances surrounding the launching of vehicles into orbit.

  • Ion Dynamic Capture Experiments with the High Performance Antiproton Trap (HiPAT). Martin, James; Lewis, Raymond; Chakrabarti, Suman; Sims, William H.; Pearson, J. Boise; Fant, Wallace E. // AIP Conference Proceedings;2003, Vol. 654 Issue 1, p563 

    To take the first step towards using the energy produced from the matter-antimatter annihilation for propulsion applications, the NASA Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) has initiated a research activity examining the storage of low energy antiprotons. The High...

  • 100 MW 1.6-μm Pr+3:LaCl3 Propulsion Laser Pumped by a Nuclear-Pumped He/Ar/Xe Laser. Boody, Frederick P. // AIP Conference Proceedings;2003, Vol. 664 Issue 1, p634 

    A 20kHz, 100-MW average power, pulsed 1.6-μm Pr[SUP+3]:LaCl[SUB3] up-conversion laser for space propulsion, pumped at high intensity by a continuous 212-MW, 2.026-μm He/Ar/Xe nuclear-pumped laser, is proposed. 1.6 μm falls within the 1.72μm>λ> 1.53 μm atmospheric transmission...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics