TITLE

Solid-phase microextraction (SPME) calibration using inkjet microdrop printing for direct loading of known analyte mass on to SPME fibers

AUTHOR(S)
Gura, Sigalit; Joshi, Monica; Almirall, Jose R.
PUB. DATE
September 2010
SOURCE
Analytical & Bioanalytical Chemistry;Sep2010, Vol. 398 Issue 2, p1049
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Solid-phase microextraction (SPME) is a widely used sampling technique that has been proved to enable efficient extraction of a broad range of analytes. Generally, SPME achieves non-exhaustive extraction, and therefore the analyte mass transfer distribution in the sampled multiphase system should be considered while developing a calibration method. Here, a new method, aimed at quantifying the extracted analytes without the need to consider their mass distribution, is proposed. This method relies on the generation of mass response curves by loading a known analyte mass onto the absorbent phase of a SPME fiber, and then conducting analysis by the preferred technique. Precise and accurate deposition of analyte over the restricted dimension of a fiber is demonstrated for the first time by utilizing a drop-on-demand microdrop printer. This system enables direct, non-contact deposition of micron-sized drops containing negligible solvent volumes (<1 nL), on the center of the extraction phase of the fiber which enables immediate analysis. Printed fiber response curves were determined herein, with three model compounds of different volatility—2,4-dinitrotoluene (2,4-DNT), diphenylamine (DPA), and 1,3 diethyl-1,3-diphenylurea (ethyl centralite, EC), using two analytical techniques, gas chromatography–mass spectrometry (GC–MS) and ion mobility spectrometry (IMS). Quantification of the absolute amounts extracted by headspace SPME yielded comparable results between the two methods of analysis with only less than 10% variation for 2,4-DNT and EC and less than 30% for DPA. In comparison, quantification by the traditional liquid injection/spike response curves determined by each technique led to mass estimates that were significantly greater by hundreds of percent. [Figure not available: see fulltext.]
ACCESSION #
53556261

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics