TITLE

The two α-dox genes of Nicotiana attenuata: overlapping but distinct functions in development and stress responses

AUTHOR(S)
Steppuhn, Anke; Gaquerel, Emmanuel; Baldwin, Ian T.
PUB. DATE
January 2010
SOURCE
BMC Plant Biology;2010, Vol. 10, p171
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Background: Plant fatty acid a-dioxygenases (α-DOX) are oxylipin-forming enzymes induced by biotic and abiotic stresses, which also participate in developmental processes. In Nicotiana attenuata, herbivory strongly induces the expression of an α-dox1 gene. To determine its role, we silenced its expression using Agrobacterium-mediated plant transformation with an inverted repeat construct. More than half of the transformed lines showed a severe dwarf growth phenotype that was very similar to the phenotype of tomato plants mutated at a second α-dox isoform. This led us to identify the corresponding α-dox2 gene in N. attenuata and examine the regulation of both α-dox genes as well as the consequences of their silencing in plant development and anti-herbivore defense. Results: The transformed lines exhibiting a dwarf growth phenotype are co-silenced for both α-dox genes resulting in a nearly complete suppression of α-DOX activity, which is associated with increases in ABA, JA and anthocyanin levels, all metabolic signatures of oxidative stress. The other lines, only silenced for α-dox1, developed similarly to wild-type plants, exhibited a 40% reduction of α-DOX activity resulting in a 50% reduction of its main product in planta (2-HOT) and showed no signs of oxidative stress. In contrast to α-dox1, the expression of α-dox2 gene is not induced by wounding or elicitors in the oral secretions of Manduca sexta. Instead, α-dox2 is expressed in roots and flowers which lack α-dox1 expression, but both genes are equally regulated during leaf maturation. We transiently silenced α-dox gene copies with gene-specific constructs using virus induced gene silencing and determined the consequences for plant development and phytohormone and 2-HOT levels. While individual silencing of α-dox1 or α-dox2 had no effects on plant growth, the co-suppression of both α-dox genes decreased plant growth. Plants transiently silenced for both α-dox genes had increased constitutive levels of JA and ABA but silencing α-dox1 alone resulted in lower M. sexta-induced levels of JA, 2-HOT and ABA. Conclusions: Thus, both α-dox isoforms function in the development of N. attenuata. In leaf maturation, the two α-dox genes have overlapping functions, but only α-dox2 is involved in root and flower development and only α-dox1 functions in anti-herbivore defense.
ACCESSION #
53459273

 

Related Articles

Share

Read the Article

Courtesy of

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics