TITLE

Disentangling the Forcing Mechanisms of a Heavy Precipitation Event along the Alpine South Side Using Potential Vorticity Inversion

AUTHOR(S)
Schlemmer, Linda; Martius, Olivia; Sprenger, Michael; Schwierz, Cornelia; Twitchett, Arwen
PUB. DATE
June 2010
SOURCE
Monthly Weather Review;Jun2010, Vol. 138 Issue 6, p2336
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Extreme precipitation events along the Alpine south side (AS) are often forced by upper-level positive potential vorticity (PV) anomalies over western Europe. These so-called PV streamers go along with a dynamical forcing for upward motion, a reduction of the static stability in the troposphere (hence facilitating convection), and are associated with low-level winds that transport moisture toward the Alps. A case of heavy precipitation is examined using the 40-yr ECMWF Re-Analysis data. Piecewise PV inversion (PPVI) and the limited-area Climate High Resolution Model (CHRM) are used to assess the influences of mesoscale parts of the streamer on the precipitation event. The impacts on the vertical stability are quantified by the convective available potential energy (CAPE) and an index of static stability. Very sensitive areas in terms of the stability are located beneath the southern tip of the streamer; smaller changes in the stability are observed in the Alpine region. The moisture transport toward the Alps is sensitive to the amplitude of the streamer, which influences the amount of water that can be transported along its eastern flank. The impacts of the topography on the flow are assessed by calculating an average inverse Froude number. Whether or not the air parcels are blocked by or lifted over the barrier (going along with suppressed and enhanced precipitation, respectively) depends on the vertical stability and the impinging wind velocity, two parameters that are inherently linked to the PV streamer and its substructure.
ACCESSION #
52216389

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics