TITLE

Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

AUTHOR(S)
Betti, R.; Chang, P. Y.; Spears, B. K.; Anderson, K. S.; Edwards, J.; Fatenejad, M.; Lindl, J. D.; McCrory, R. L.; Nora, R.; Shvarts, D.
PUB. DATE
May 2010
SOURCE
Physics of Plasmas;May2010, Vol. 17 Issue 5, p058102
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Pτ for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter χ including pressure, confinement time, and temperature is derived to complement the product Pτ. A metric for performance assessment should include both χ and Pτ. The ignition parameter and the product Pτ are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Pτ∼1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Pτ∼1 atm s. Since OMEGA implosions are relatively cold (T∼2 keV), their overall ignition parameter χ∼0.02–0.03 is ∼5× lower than in JET (χ∼0.13), where the average temperature is about 10 keV.
ACCESSION #
51059847

 

Related Articles

  • Review of Japanese fusion program and role of inertial fusion. Motojima, O. // European Physical Journal D -- Atoms, Molecules, Clusters & Opti;Aug2007, Vol. 44 Issue 2, p219 

    The high compression of 600 times liquid density and the recent fast heating of a compressed core to 1-keV temperature have provided proof-of-principle of the fast ignition concept, and these results have significantly contributed to approve first phase of the Fast Ignition Realization...

  • Effect of inactive impurities on the burning of ICF targets. Gus'kov, S.; Il'in, D.; Sherman, V. // Plasma Physics Reports;Dec2011, Vol. 37 Issue 12, p1020 

    The efficiency of thermonuclear burning of the spherical deuterium-tritium (DT) plasma of inertial confinement fusion (ICF) targets in the presence of low- Z impurities (such as lithium, carbon, or beryllium) with arbitrary concentrations is investigated. The effect of impurities produced due to...

  • Developing a commercial production process for 500 000 targets per day: A key challenge for inertial fusion energy. Goodin, D. T.; Alexander, N. B.; Besenbruch, G. E.; Bozek, A. S.; Brown, L. C.; Carlson, L. C.; Flint, G. W.; Goodman, P.; Kilkenny, J. D.; Maksaereekul, W.; McQuillan, B. W.; Nikroo, A.; Paguio, R. R.; Petzoldt, R. W.; Raffray, R.; Schroen, D. G.; Sheliak, J. D.; Spalding, J.; Streit, J. E.; Tillack, M. S. // Physics of Plasmas;May2006, Vol. 13 Issue 5, p056107 

    As is true for current-day commercial power plants, a reliable and economic fuel supply is essential for the viability of future Inertial Fusion Energy (IFE) [Energy From Inertial Fusion, edited by W. J. Hogan (International Atomic Energy Agency, Vienna, 1995)] power plants. While IFE power...

  • Cryogenic DT and D2 targets for inertial confinement fusion. Sangster, T. C.; Betti, R.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Elasky, L. M.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Jacobs-Perkins, D.; Janezic, R.; Keck, R. L.; Knauer, J. P.; Loucks, S. J.; Lund, L. D.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Radha, P. B. // Physics of Plasmas;May2007, Vol. 14 Issue 5, p058101 

    Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) [W. J. Hogan et al., Nucl. Fusion 41, 567 (2001)] are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more...

  • Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance. McKenty, P. W.; Wittman, M. D.; Harding, D. R. // Journal of Applied Physics;10/1/2006, Vol. 100 Issue 7, p073302 

    The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use...

  • Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA. Hu, S. X.; Goncharov, V. N.; Radha, P. B.; Marozas, J. A.; Skupsky, S.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; McCrory, R. L. // Physics of Plasmas;Oct2010, Vol. 17 Issue 10, p102706 

    Maximizing the neutron yield to obtain energy gain is the ultimate goal for inertial confinement fusion. Nonuniformities seeded by target and laser perturbations can disrupt neutron production via the Rayleigh-Taylor instability growth. To understand the effects of perturbations on the neutron...

  • Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility. Boehly, T. R.; Munro, D.; Celliers, P. M.; Olson, R. E.; Hicks, D. G.; Goncharov, V. N.; Collins, G. W.; Robey, H. F.; Hu, S. X.; Morozas, J. A.; Sangster, T. C.; Landen, O. L.; Meyerhofer, D. D. // Physics of Plasmas;May2009, Vol. 16 Issue 5, p056302 

    A high-performance inertial confinement fusion capsule is compressed by multiple shock waves before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of those shock waves must be accurately controlled. Ignition experiments at the National Ignition Facility (NIF)...

  • High energy x-ray imager for inertial confinement fusion at the National Ignition Facility. Tommasini, Riccardo; Koch, Jeffrey A.; Young, Bruce; Ng, Ed; Phillips, Tom; Dauffy, Lucile // Review of Scientific Instruments;Oct2006, Vol. 77 Issue 10, p10E301 

    X-ray imaging is a fundamental diagnostic tool for inertial confinement fusion (ICF) research and provides data on the size and the shape of the core in implosions. We report on the feasibility and performance analyses of an ignition x-ray imager to be used on cryogenic deuterium-tritium...

  • The experimental plan for cryogenic layered target implosions on the National Ignition Facility-The inertial confinement approach to fusion. Edwards, M. J.; Lindl, J. D.; Spears, B. K.; Weber, S. V.; Atherton, L. J.; Bleuel, D. L.; Bradley, D. K.; Callahan, D. A.; Cerjan, C. J.; Clark, D; Collins, G. W.; Fair, J. E.; Fortner, R. J.; Glenzer, S. H.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatchett, S. P.; Izumi, N.; Jacoby, B. // Physics of Plasmas;May2011, Vol. 18 Issue 5, p051003 

    Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the...

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics