TITLE

Effect of electric field on the electronic structures of carbon nanotubes

AUTHOR(S)
Kim, Changwook; Kim, Bongsoo; Lee, Seung Mi; Jo, Chulsu; Lee, Young Hee
PUB. DATE
August 2001
SOURCE
Applied Physics Letters;8/20/2001, Vol. 79 Issue 8, p1187
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
We have investigated the electronic structures of a capped single-walled carbon nanotube under the applied electric field using density functional calculations. The capped tube withstands field strengths up to 2 V/Å. When the electric field is applied along the tube axis, charges are transferred from the occupied levels localized at the top pentagon of the cap, and not from the highest occupied level localized at the side pentagon, to the unoccupied levels. We find that the charge densities at the top of the armchair cap show two- or five-lobed patterns depending on the field strength, whereas those of the zigzag cap show a three-lobed pattern. The interpretation for the images of the field emission microscope is also discussed. © 2001 American Institute of Physics.
ACCESSION #
5017194

 

Related Articles

  • Microstructure and field emission properties of coral-like carbon nanotubes. Shang, N. G.; Li, C. P.; Wong, W. K.; Lee, C. S.; Bello, I.; Lee, S. T. // Applied Physics Letters;12/23/2002, Vol. 81 Issue 26, p5024 

    Coral-like carbon nanotubes (CNTs) have been synthesized by using chemical vapor deposition. Unlike conventional CNTs, the as-deposited CNT consisted of a high density of interlaced graphitic nanoflakes of about 5 nm in thickness. The CNTs had a bamboo-like internal structure with their outer...

  • Room-temperature fabrication of high-resolution carbon nanotube field-emission cathodes by self-assembly. Oh, S. J.; Cheng, Y.; Zhang, J.; Shimoda, H.; Zhou, O. // Applied Physics Letters;4/14/2003, Vol. 82 Issue 15, p2521 

    In this letter, we report a process for room-temperature assembly of patterned and periodic structures of carbon nanotubes (CNTs). Well-defined patterns with less than a 10-µm linewidth and variable thickness were readily deposited. The CNTs show long-range in-plane orientation ordering and...

  • Field emission from open ended aluminum nitride nanotubes. Tondare, V. N.; Balasubramanian, C.; Shende, S. V.; Joag, D. S.; Godbole, V. P.; Bhoraskar, S. V.; Bhadbhade, M. // Applied Physics Letters;6/24/2002, Vol. 80 Issue 25, p4813 

    This letter reports the field emission measurements from the nanotubes of aluminum nitride which were synthesized by gas phase condensation using the solid-vapor equilibria. A dc arc plasma reactor was used for producing the vapors of aluminum in a reactive nitrogen atmosphere. Nanoparticles and...

  • Field-emission properties of molybdenum disulfide nanotubes. Nemanič, Vincenc; Žumer, Marko; Zajec, Bojan; Pahor, Jurij; Remškar, Maja; Mrzel, Aleš; Panjan, Peter; Mihailovič, Dragan // Applied Physics Letters;6/23/2003, Vol. 82 Issue 25, p4573 

    The field-emission (FE) properties of molybdenum disulfide nanotubes (NTs) are reported for the single-tip geometry. Reproducibly stable FE currents in excess of 10 μA were measured from single NT tips in vacuum of 10[SUP-7] mbar. Valuable characteristics of the nanotube material are ease of...

  • Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Jo, S. H.; Tu, Y.; Huang, Z. P.; Carnahan, D. L.; Wang, D. Z.; Ren, Z. F. // Applied Physics Letters;5/19/2003, Vol. 82 Issue 20, p3520 

    The length and the spacing of carbon nanotube (CNT) films are varied independently to investigate their effect on the field-emission characteristics of the vertically aligned CNT films grown by plasma-enhanced hot filament chemical vapor deposition using pulsed-current electrochemically...

  • Universal field-emission model for carbon nanotubes on a metal tip. Zhong, D. Y.; Zhang, G. Y.; Liu, S.; Sakurai, T.; Wang, E. G. // Applied Physics Letters;1/21/2002, Vol. 80 Issue 3, p506 

    Electron-field-emission properties have been investigated systematically for carbon nanotubes (CNTs) fabricated on a metal tip. With a vacuum gap of 0.7 mm, the threshold field is as low as 0.7 V/μm and the current density approaches 10 mA/cm[sup 2] at an electronic field of 1.0 V/μm. The...

  • In situ imaging of field emission from individual carbon nanotubes and their structural damage. Wang, Zhong L.; Gao, Rui Ping; de Heer, Walt A.; Poncharal, P. // Applied Physics Letters;2/4/2002, Vol. 80 Issue 5, p856 

    Field emission of individual carbon nanotubes was observed by in situ transmission electron microscopy. A fluctuation in emission current was due to a variation in distance between the nanotube tip and the counter electrode owing to a “head-shaking” effect of the nanotube during...

  • Field emission from well-aligned carbon nanotips grown in a gated device structure. Tsai, C. L.; Chen, C. F.; Lin, C. L. // Applied Physics Letters;3/11/2002, Vol. 80 Issue 10, p1821 

    Vertically well-aligned, high-aspect-ratio carbon nanotips have been directly grown upward on the gated device structure with 4 μm gate aperture. The nanotips rapidly nucleate and grow without any catalyst. In addition, selected area deposition of nanotips is achieved by using a Pt layer as...

  • Study of the field-screening effect of highly ordered carbon nanotube arrays. Suh, Jung Sang; Jeong, Kwang Seok; Lee, Jin Seung; Han, Intaek // Applied Physics Letters;4/1/2002, Vol. 80 Issue 13, p2392 

    We have studied the field-screening effect provoked by the proximity of neighboring tubes by changing the tube height of highly ordered carbon nanotubes fabricated on porous anodic aluminum oxide templates. The field emission was critically affected by the tube height that protruded from the...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics