Behavior of Caenorhabditis elegans in alternating electric field and its application to their localization and control

Rezai, Pouya; Siddiqui, Asad; Selvaganapathy, Ponnambalam Ravi; Gupta, Bhagwati P.
April 2010
Applied Physics Letters;4/12/2010, Vol. 96 Issue 15, p153702
Academic Journal
Caenorhabditis elegans is an attractive model organism because of its genetic similarity to humans and the ease of its manipulation in the laboratory. Recently, it was shown that a direct current electric field inside microfluidic channel induces directed movement that is highly sensitive, reliable, and benign. In this letter, we describe the worm’s movement response to alternating electric fields in a similar channel setup. We demonstrate that the 1 Hz and higher frequency of alternating current field can effectively localize worms in the channel. This discovery could potentially help design microfluidic devices for high throughput automated analysis of worms.


Related Articles

  • The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans. Luo, Hui; Xiong, Jing; Zhou, Qiaoni; Xia, Liqiu; Yu, Ziquan // Applied Microbiology & Biotechnology;Dec2013, Vol. 97 Issue 23, p10135 

    Several families of crystal proteins from Bacillus thuringiensis exhibit nematicidal activity. Cry5B protein, a pore-forming toxin, has been intensively studied yielding many insights into the mode of action of crystal protein at molecular level and pathogenesis of pore-forming toxins. However,...

  • From Modes to Movement in the Behavior of Caenorhabditis elegans. Stephens, Greg J.; Johnson-Kerner, Bethany; Bialek, William; Ryu, William S. // PLoS ONE;2010, Vol. 5 Issue 11, p1 

    Organisms move through the world by changing their shape, and here we explore the mapping from shape space to movements in the nematode Caenorhabditis elegans as it crawls on an agar plate. We characterize the statistics of the trajectories through the correlation functions of the orientation...

  • Precision trapping on a microfluidic chip. R. M. W. // Physics Today;Jun2014, Vol. 67 Issue 6, p21 

    The article discusses research on precision trapping on a microfluid chip and references a study by Cornell University researchers led by Michelle Wang who have developed an optoelectrical fluidic platform that requires less power and can capture and manipulate hundreds of molecules simultaneously.

  • Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior. Moy, Kyle; Li, Weiyu; Tran, Huu Phuoc; Simonis, Valerie; Story, Evan; Brandon, Christopher; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun // PLoS ONE;12/29/2015, Vol. 10 Issue 12, p1 

    The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced...

  • Rheonix closes $12.6M financing round. Tampone, Kevin // Business Journal (Central New York);5/28/2010, Vol. 24 Issue 22, p5B 

    The article reports that Rheonix Inc. will use 12.6 million dollars of venture financing to fund the development of applications for testing technology in the health-care through its chip-sized microfluidic device.

  • Microfluidic Device with Artificial Arteries Measures Drugs' Influence on Blood Clotting.  // Bioscience Technology;2014, p1 

    The article evaluates a microfluidic device with artificial arteries, developed by researchers to measure the impact of drugs on blood clotting.

  • Guest Editor Introduction: Special Issue on Nano/Bio-Inspired Applications and Architectures. Mishra, Prabhat // International Journal of Parallel Programming;Aug2009, Vol. 37 Issue 4, p343 

    The article discusses various articles published within the issue, including one by Nageswaran and colleagues on the brain derived vision algorithm and the physiological operating principles of thalamo-cortical brain circuits, one by Zhao and Chakrabarty on the online testing of microfluidic...

  • Inside Lab Invest.  // Laboratory Investigation (00236837);Aug2013, Vol. 93 Issue 8, p856 

    An introduction is presented in which the editor discusses various reports within the issue on topics including evaluation of antifibrotic compounds in scarring, and microfluidic device for gene expression studies.

  • Cancer detection: Tracking roving cancer cells.  // Nature;4/8/2010, Vol. 464 Issue 7290, p817 

    The article reports that Daniel Haber and his co-workers at the Massachusetts General Hospital have developed a microfluidic system which can diagnose tumour cells circulating in the bloodstream of prostate cancer patients.


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics