Polymer photonic crystal slab waveguides

Liguda, C.; Bo¨ttger, G.; Kuligk, A.; Blum, R.; Eich, M.; Roth, H.; Kunert, J.; Morgenroth, W.; Elsner, H.; Meyer, H. G.
April 2001
Applied Physics Letters;4/23/2001, Vol. 78 Issue 17, p2434
Academic Journal
We present details of the fabrication, calculations, and transmission measurements for finite two-dimensional (2D) polymer photonic crystal (PC) slab waveguides, which were fabricated from a benzocyclobutene polymer on a low refractive index substrate from Teflon. A square air hole lattice (500 nm lattice constant, 300 nm hole diameter) was realized by electron beam lithography and reactive ion etching. Polarization and wavelength dependent transmission results show TE-like and TM-like stop gaps at 1.3 μm excitation wavelengths and are in good agreement with the calculated data obtained by 2D and three-dimensional finite difference time domain methods. Transmission was suppressed by 15 dB in the center of the TE-like stop gap for a PC length of ten lattice constants. © 2001 American Institute of Physics.


Related Articles

  • Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide. Tokushima, Masatoshi; Kosaka, Hideo; Tomita, Akihisa; Yamada, Hirohito // Applied Physics Letters;2/21/2000, Vol. 76 Issue 8 

    We have demonstrated 1.55 μm wavelength lightwave propagation through a 120° sharply bent waveguide formed in a triangular-lattice two-dimensional photonic crystal (2D PC). Such propagation has not previously been experimentally confirmed. The photonic crystal was fabricated in a...

  • Waveguiding in planar photonic crystals. Loncar, Marko; Nedeljkovic, Dusan; Doll, Theodor; Vuckovic, Jelena; Scherer, Axel; Pearsall, Thomas P. // Applied Physics Letters;9/25/2000, Vol. 77 Issue 13 

    Photonic crystal planar circuits designed and fabricated in silicon on silicon dioxide are demonstrated. Our structures are based on two-dimensional confinement by photonic crystals in the plane of propagation, and total internal reflection to achieve confinement in the third dimension. These...

  • Experimental demonstration of photonic crystal based waveguides. Temelkuran, B.; Ozbay, E. // Applied Physics Letters;1/25/1999, Vol. 74 Issue 4, p486 

    Studies the experimental demonstration of wave guides built around layer-by-layer photonic crystals. Basic motivation in photonic crystal-based waveguides; Transmission of electromagnetic waves through planar waveguide structures within the frequency range of the photonic band gap; Dispersion...

  • Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs. Lau, Wah Tung; Fan, Shanhui // Applied Physics Letters;11/18/2002, Vol. 81 Issue 21, p3915 

    We introduce a general designing procedure that allows us, for any given photonic crystal slab, to create an appropriate line defect structure that possesses single-mode bands with large bandwidth and low dispersion within the photonic band-gap region below the light line. This procedure...

  • Effects due to disorder on photonic crystal-based waveguides. Kwan, Kai-Chong; Zhang, Xiangdong; Zhang, Zhao-Qing; Chan, C. T. // Applied Physics Letters;6/23/2003, Vol. 82 Issue 25, p4414 

    Using the multiple-scattering method, we have studied the effects of various types of disorders on the performance of two-dimensional photonic crystal-based waveguides with cylindrical inclusions. The following three types of disorders are considered: (a) all cylinders are disordered; (b) only...

  • Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes. Tanaka, Yoshinori; Asano, Takashi; Akahane, Yoshihiro; Song, Bong-Shik; Noda, Susumu // Applied Physics Letters;3/17/2003, Vol. 82 Issue 11, p1661 

    The effects of truncated cone air holes on propagation losses from line defect waveguides in two-dimensional (2D) photonic crystal (PC) slabs are investigated. It is shown that coupling between TE-like waveguide modes and TM-like slab modes due to out-of-plane structural asymmetries can result...

  • Low-loss channel waveguides with two-dimensional photonic crystal boundaries. Smith, C. J. M.; Benisty, H.; Olivier, S.; Rattier, M.; Weisbuch, C.; Krauss, T. F.; De La Rue, R. M.; Houdré, R.; Oesterle, U. // Applied Physics Letters;10/30/2000, Vol. 77 Issue 18 

    We have used transmission measurements to estimate the propagation loss of submicron channels defined in two-dimensional photonic crystals patterned into a Ga(Al)As waveguide. The measured propagation loss of the fundamental mode is indistinguishable from the material absorption, setting an...

  • Propagation losses of the fundamental mode in a single line-defect photonic crystal waveguide on an InP membrane. De´sie`res, Y.; Benyattou, T.; Orobtchouk, R.; Morand, A.; Benech, P.; Grillet, C.; Seassal, C.; Letartre, X.; Rojo-Romeo, P.; Viktorovitch, P. // Journal of Applied Physics;9/1/2002, Vol. 92 Issue 5, p2227 

    We have investigated light propagation through a single line-defect photonic crystal waveguide on a InP membrane. Modal analysis was performed using the finite-difference time-domain method. The fundamental mode has been found to be very close to the fundamental mode in a "refractive" waveguide...

  • Propagation of light beams along line defects formed in a-Si/SiO[sub 2] three-dimensional... Hanaizumi, Osamu; Ohtera, Yasuo; Sato, Takashi; Kawakami, Shojiro // Applied Physics Letters;2/8/1999, Vol. 74 Issue 6, p777 

    Studies optical waveguides in three-dimensional photonic crystals. Propagation of light beams; Structural characteristics of the crystals; Formation of line defects; Measurements of transmittance; Agreement of measurements with finite-difference time-domain calculations.


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics