TITLE

Highly doped thin-channel GaN-metal-semiconductor field-effect transistors

AUTHOR(S)
Gaska, R.; Shur, M. S.; Hu, X.; Yang, J. W.; Tarakji, A.; Simin, G.; Khan, A.; Deng, J.; Werner, T.; Rumyantsev, S.; Pala, N.
PUB. DATE
February 2001
SOURCE
Applied Physics Letters;2/5/2001, Vol. 78 Issue 6, p769
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
We report on the influence of the channel doping on dc, high frequency, and noise performance of GaN metal-semiconductor field-effect transistors (MESFETs) grown on sapphire substrates. The devices with the channel thicknesses from 50 to 70 nm and doping levels up to 1.5x10[sup 18] cm[sup -3] were investigated. An increase in the channel doping results in the improved dc characteristics, higher cutoff, and maximum oscillation frequencies, and reduced low frequency and microwave noise. The obtained results demonstrate that the dc and microwave performance characteristics of short-channel GaN MESFETs may be comparable to those for conventional AlGaN/GaN heterostructure FETs. © 2001 American Institute of Physics.
ACCESSION #
4710304

 

Related Articles

  • Investigations of GaN surface quantum well in AlGaN/GaN transistor heterostructures by contactless electroreflectance spectroscopy. Motyka, M.; Syperek, M.; Kudrawiec, R.; Misiewicz, J.; Rudziński, M.; Hageman, P. R.; Larsen, P. K. // Applied Physics Letters;12/4/2006, Vol. 89 Issue 23, p231912 

    AlGaN/GaN transistor heterostructures, caped by ∼2 nm GaN layer, were investigated by contactless electroreflectance (CER) spectroscopy at room temperature. Below the AlGaN-related transition CER spectra have shown a clear resonance at the energy of ∼3.7 eV, i.e., at much higher energy...

  • Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors.... Khan, M. Asif; Shur, Michael S. // Applied Physics Letters;2/27/1995, Vol. 66 Issue 9, p1083 

    Explores the characteristics and microwave performance of aluminum gallium nitride (AlGaN)/GaN heterostructure field-effect transistors. Occurrence of temperature activated shunt conductance; Determination of the cutoff frequency and maximum frequency of oscillations; Effect of deep traps on the...

  • Two-channel AlGaN/GaN heterostructure field effect transistor for high power applications. Gaska, R.; Shur, M.S. // Journal of Applied Physics;3/1/1999, Vol. 85 Issue 5, p3009 

    Presents information on a study which described double-channel AlGaN/GaN heterostructure field-effect transistors for high power applications. Calculation of band diagram of the AlGaN/GaN double channel heterostructures; Experimental results and discussion.

  • Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Ibbetson, J. P.; Ibbetson, J.P.; Fini, P. T.; Fini, P.T.; Ness, K. D.; Ness, K.D.; DenBaars, S. P.; DenBaars, S.P.; Speck, J. S.; Speck, J.S.; Mishra, U. K.; Mishra, U.K. // Applied Physics Letters;7/10/2000, Vol. 77 Issue 2 

    The origin of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructure field effect transistors is examined theoretically and experimentally. Based on an analysis of the electrostatics, surface states are identified as an important source of electrons. The role of the...

  • Two-dimensional electron-gas density in Al[sub X]Ga[sub 1-X]N/GaN heterostructure field-effect transistors. Maeda, Narihiko; Nishida, Toshio; Kobayashi, Naoki; Tomizawa, Masaaki // Applied Physics Letters;9/28/1998, Vol. 73 Issue 13 

    We have calculated maximum two-dimensional electron-gas densities in Al[sub X]Ga[sub 1-X]N/GaN heterostructure field-effect transistors with wurtzite crystal structures in (0001) orientation, by self-consistently solving Schro¨dinger’s and Poisson’s equations, taking the...

  • Multilayer AlN/AlGaN/GaN/AlGaN heterostructures for high-power field-effect transistors grown by ammonia MBE on AlN/SiC substrates. Alekseev, A. N.; Aleksandrov, S. B.; Byrnaz, A. É.; Kokin, S. V.; Krasovitskiĭ, D. M.; Pavlenko, M. V.; Petrov, S. I.; Pogorel’skiĭ, M. Yu.; Pogorel’skiĭ, Yu. V.; Sokolov, I. A.; Sokolov, M. A.; Stepanov, M. V.; Tkachenko, A. G.; Chalyĭ, V. P.; Shkurko, A. P. // Technical Physics Letters;Aug2008, Vol. 34 Issue 8, p711 

    Preliminary results on the transfer of the ammonia MBE technology of nitride transistor heterostructures to AlN/SiC substrates. The main device properties achieved previously with AlN/AlGaN/GaN/AlGaN multilayer heterostructures on sapphire are almost completely reproduced on the new base despite...

  • Electrical Properties of n-GaN/p-SiC Heterojunctions. Ledyaev, O. Yu.; Strel'chuk, A. M.; Kuznetsov, A. N.; Seredova, N. V.; Zubrilov, A. S.; Volkova, A. A.; Nikolaev, A. E.; Lebedev, A. A. // Semiconductors;Dec2005, Vol. 39 Issue 12, p1403 

    Epitaxial GaN layers were grown by hydride vapor phase epitaxy (HVPE) on commercial (CREE Inc., USA) p+-6H-SiC substrates (Na – Nd ≈ 7.8 × 1017cm–3) and n+-6H-SiC Lely substrates with a predeposited p+-6H-SiC layer. A study of the electrical properties of the n-GaN/p-SiC...

  • Effects of threading dislocations on drain current dispersion and slow transients in unpassivated AlGaN/GaN/Si heterostructure field-effect transistors. Ghosh, Saptarsi; Dinara, Syed Mukulika; Mukhopadhyay, Partha; Jana, Sanjay K.; Bag, Ankush; Chakraborty, Apurba; Edward Yi Chang; kabi, Sanjib; Biswas, Dhrubes // Applied Physics Letters;8/18/2014, Vol. 105 Issue 7, p1 

    Current transient analysis combined with response to pulsed bias drives have been used to explore the possibilities of threading dislocations affecting the current dispersion characteristics of AlGaN/GaN heterostructure field-effect transistors (HFETs). A growth strategy is developed to modulate...

  • Role of Fe impurity complexes in the degradation of GaN/AlGaN high-electron-mobility transistors. Puzyrev, Y. S.; Schrimpf, R. D.; Fleetwood, D. M.; Pantelides, S. T. // Applied Physics Letters;2/2/2015, Vol. 106 Issue 5, p1 

    Recent experiments show that GaN/AlGaN high-electron-mobility transistors suffer from significant current collapse, which is caused by an increase in the concentration of traps with energy levels 0.5-0.6 eV below the conduction-band edge. This increase in trap concentration is consistent with...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics