TITLE

Near-field optical microscopy with a vibrating probe in aqueous solution

AUTHOR(S)
Mannelquist, Anders; Iwamoto, Hideki; Szabo, Gabor; Shao, Zhifeng
PUB. DATE
April 2001
SOURCE
Applied Physics Letters;4/2/2001, Vol. 78 Issue 14, p2076
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
We show that with an appropriately configured scanning quartz pipette coated with aluminum, a near-field scanning optical microscope (NSOM) can be constructed to operate in aqueous solution for applications in biology. Many of the technical limitations associated with a scanning pipette were circumvented by introducing a small modulation of the distance between the pipette and the sample. We show that this ac method allows the pipette to be positioned very close to the sample surface and is robust in obtaining reproducible NSOM images in solution. This approach is also compatible with fluorescence imaging and fluorescence resonance energy transfer, and should further facilitate the use of NSOM in various areas of cell biology where high resolution is considered to be critical. © 2001 American Institute of Physics.
ACCESSION #
4710165

 

Related Articles

  • Three-dimensional wavefront imaging by near-field scanning optical microscopy. Levy, J.; Cohen, A.; Awschalom, D.D. // Review of Scientific Instruments;May95, Vol. 66 Issue 5, p3385 

    Describes the design of a near-field scanning optical microscope head compatible with an existing commercial scanning probe system. Collection of near-field images of coherent scattering from a fused silica grating; Comparison of the images with numerical simulations of scattering using both...

  • Tip-sample interaction in a `shear-force' near-field scanning optical microscope. Hsu, Kate; Gheber, Levi A. // Review of Scientific Instruments;Sep99, Vol. 70 Issue 9, p3609 

    Analyzes the interaction between the tip of a near-field scanning optical microscope and the sample it scans, and compares it with a simple tapping model. Oscillations pattern of the feedback loop; 'Shear-force control'; Similarity with the tapping mode in atomic force microscope.

  • Influence of the water layer on the shear force damping in near-field microscopy. Davy, S.; Spajer, M.; Courjon, D. // Applied Physics Letters;11/2/1998, Vol. 73 Issue 18 

    The influence of the water layer on the shear force damping is investigated in the case of a perfectly flat mica surface. In ambient conditions it is shown that the damping curve exhibits three particular regimes depending on the tip-sample distance. Moreover, the damping varies significantly...

  • Approach interactions of scanned probes in dynamic pecking mode. Wetsel, G. C.; Farahi, R. H.; Richardson, C. J. K.; Spicer, J. B. // Applied Physics Letters;10/15/2001, Vol. 79 Issue 16, p2657 

    Sharp, conical, metallic tips oriented perpendicular to the axis of a rod vibrating in bending (pecking mode) are used as force sensors in scanned force probes and as optical scatterers in apertureless near-field optical microscopes. We have measured the displacement of such probes as a function...

  • Demonstration of near-field scanning photoreflectance spectroscopy. Paulson, Charles; Ellis, A. B.; Ellis, A.B.; McCaughan, Leon; Hawkins, Brian; Sun, Jingxi; Jingxi Sun; Kuech, T. F.; Kuech, T.F. // Applied Physics Letters;9/25/2000, Vol. 77 Issue 13 

    A near-field scanning optical microscope (NSOM) was developed to perform photoreflectance (PR) spectroscopy experiments at high spatial resolution (∼1 μm). Representative PR spectra are shown, along with an image illustrating the capability of observing contrast in images due to the...

  • Scattering of evanescent light by a finite-size probe in near-field scanning optical microscopy. Fukuzawa, Kenji; Kuwano, Hiroki // Journal of Applied Physics;11/1/1996, Vol. 80 Issue 9, p4799 

    Focuses on a study which calculated the scattering of the evanescent light by a finite-size SiO[sub2] probe in near field scanning optical microscopy. Electromagnetic-field calculation; Results and discussion; Conclusion.

  • Vacuum near-field scanning optical microscope for variable cryogenic temperatures. Behme, G.; Richter, A.; Suptitz, M.; Lienau, Ch. // Review of Scientific Instruments;Sep97, Vol. 68 Issue 9, p3458 

    Describes the design of a novel near-field scanning optical microscope (NSOM) for cyrogenic temperatures and operation in vacuum. Use of a helium flow cryostat for active temperature control of the sample; Simplification of the near-field microscopy at variable sample temperatures; Schematic...

  • Tiny Tips Probe Nanotechnology. Malsch, Ineke // Industrial Physicist;Oct/Nov2002, Vol. 8 Issue 5, p16 

    Examines the scanning probe microscopes for accurate measurements of the nanostructures in three dimensions. Capabilities of the scanning tunneling microscopes on atomic structure imaging; Ability of the scanning near-field optical microscopes on optical images of delicate structures; Level of...

  • Progress Made in Near-Field Imaging with Light from a Sharp Tip. Levi, Barbara Goss // Physics Today;Jul99, Vol. 52 Issue 7, p18 

    Describes experiments involving near-field scanning optical microscopy (NSOM). Limitations of resolution achievable with aperture-based NSOM; Details on fluorescence or Raman scattering; Functions of infra-red absorption; Other approaches to field enhancement.

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics