Identification of a CYP3A form (CYP3A126) in fathead minnow ( Pimephales promelas) and characterisation of putative CYP3A enzyme activity

Christen, Verena; Caminada, Daniel; Arand, Michael; Fent, Karl
January 2010
Analytical & Bioanalytical Chemistry;Jan2010, Vol. 396 Issue 2, p585
Academic Journal
Cytochrome P450-dependent monooxygenases (CYPs) are involved in the metabolic defence against xenobiotics. Human CYP3A enzymes metabolise about 50% of all pharmaceuticals in use today. Induction of CYPs and associated xenobiotic metabolism occurs also in fish and may serve as a useful tool for biomonitoring of environmental contamination. In this study we report on the cloning of a CYP3A family gene from fathead minnows ( Pimephales promelas), which has been designated as CYP3A126 by the P450 nomenclature committee (GenBank no. EU332792). The cDNA was isolated, identified and characterised by extended inverse polymerase chain reaction (PCR), an alternative to the commonly used method of rapid amplification of cDNA ends. In a fathead minnow cell line we identified a full-length cDNA sequence (1,863 base pairs (bp)) consisting of a 1,536 bp open reading frame encoding a 512 amino acid protein. Genomic analysis of the identified CYP3A isoenzyme revealed a DNA sequence consisting of 13 exons and 12 introns. CYP3A126 is also expressed in fathead minnow liver as demonstrated by reverse transcription PCR. Exposure of fathead minnow (FHM) cells with the CYP3A inducer rifampicin leads to dose-dependent increase in putative CYP3A enzyme activity. In contrast, inhibitory effects of diazepam treatment were observed on putative CYP3A enzyme activity and additionally on CYP3A126 mRNA expression. This indicates that CYP3A is active in FHM cells and that CYP3A126 is at least in part responsible for this CYP3A activity. Further investigations will show whether CYP3A126 is involved in the metabolism of environmental chemicals. [Figure not available: see fulltext.]


Related Articles

  • Precision-cut liver slices from rats of different ages: basal cytochrome P450-dependent monooxygenase activities and inducibility. Lupp, Amelie; Glöckner, Reinhild; Etzrodt, Joachim; Müller, Dieter // Analytical & Bioanalytical Chemistry;Nov2008, Vol. 392 Issue 6, p1173 

    The biotransformation capacity – of the cytochrome P450 (CYP) system for example – is lower but inducibility is more pronounced in neonates than in adults. On the other hand, both enzyme activities and inducibility decline with senescence. Precision-cut rat liver slices are widely...

  • Oxidation of Endobiotics Mediated by Xenobiotic-Metabolizing Forms of Human Cytochrome P450. Niwa, Toshiro; Murayama, Norie; Yamazaki, Hiroshi // Current Drug Metabolism;Sep2009, Vol. 10 Issue 7, p700 

    Cytochrome P450s (P450 or CYPs) comprise a superfamily of enzymes that catalyze the oxidation of a wide variety of xenobiotic chemicals including drugs and environmental carcinogens. Recent studies have demonstrated that endogenous chemicals are also oxidized by human P450s which mainly...

  • Regulation of Drug-metabolizing Human Cytochrome P450s. Monostory, Katalin; Pascussi, Jean-Marc // Acta Chimica Slovenica;2008, Vol. 55 Issue 1, p20 

    Drug-metabolizing enzymes, primarily cytochrome P450 (P450) enzymes, play central role in biotransformation, detoxication and elimination of various, structurally diverse xenobiotics. The expression of P450s is controlled by specific receptors capable of sensing xenobiotics, including notably...

  • Establishment of a novel in vitro system for studying the interaction of xenobiotic metabolism of liver and intestinal microflora. Laube, B.; Winkler, S.; Ladstetter, B.; Scheller, T.; Schwarz, L.R. // Archives of Toxicology;Sep2000, Vol. 74 Issue 7, p379 

    We developed a new two-chamber system for the coculture of hepatocytes and fecal microflora under aerobic and anaerobic conditions, respectively, to investigate the sequential metabolism of chemicals by the liver and microflora in vitro. The culture device consisted of two chambers separated by...

  • New findings in studies of cytochromes P450. Myasoedova, K. N. // Biochemistry (00062979);Sep2008, Vol. 73 Issue 9, p965 

    Cytochromes P450 represent a numerous family of heme-containing enzymes belonging to the group of monooxygenases. In prokaryotes, cytochromes P450 usually perform a plastic function, whereas in eukaryotes their functions are very diverse. Mammalian cytochromes P450 are components of membranes...

  • Kidney CYP450 Enzymes: Biological Actions Beyond Drug Metabolism. Zhao, X.; Imig, J.D. // Current Drug Metabolism;Feb2003, Vol. 4 Issue 1, p73 

    Arachidonic acid can be metabolized by cytochrome P450 (CYP450) enzymes to 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). These arachidonic acid metabolites are involved in...

  • Prediction of Human Drug Metabolizing Enzyme Induction. Mankowski, Dayna C.; Ekins, Sean // Current Drug Metabolism;Oct2003, Vol. 4 Issue 5, p381 

    New chemical entities are routinely screened in vitro and in vivo for their ability to induce cytochrome P450s (CYP), other drug-metabolizing enzymes and possibly transporters in an attempt to more accurately predict clinical parameters such as drug-drug interactions and clearance in humans....

  • Human Cytochromes P450 Associated with the Phase 1 Metabolism of Drugs and other Xenobiotics: A Compilation of Substrates and Inhibitors of the CYP1, CYP2 and CYP3 Families. Lewis, David F.V. // Current Medicinal Chemistry;Oct2003, Vol. 10 Issue 19, p1955 

    This review represents a compilation of typical substrates and inhibitors for human cytochrome P450 (CYP) enzymes that are involved in drug metabolism, specifically those from the CYP1, CYP2 and CYP3 families. Relatively recent literature on substrates and inhibitors has been collected and the...

  • The Effect of Psoralens on Hepatic and Cutaneous Drug Metabolizing Enzymes and Cytochrome P-450. Bickers, David R.; Mukhtar, Hasan; Molica Jr., S. J.; Pathak, Madhu A. // Journal of Investigative Dermatology;Sep82, Vol. 79 Issue 3, p201 

    Psoralens are tricyclic furocoumarins with potent photosensitizing properties in the skin and are now widely used in the treatment of several dermatologic diseases. In this study the effect of 3 different psoralens 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP) and isopsoralen on...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics