# Differentiability and higher integrability results for local minimizers of splitting-type variational integrals in 2D with applications to nonlinear Hencky-materials

## Related Articles

- A reverse log-Sobolev inequality in the Segal-Bargmann space. Sontz, Stephen Bruce // Journal of Mathematical Physics;Mar1999, Vol. 40 Issue 3, p1677
Reports on the use of results on the properties of the reproducing kernel of the Segal-Bargmann space to demonstrate a family of energy-entropy inequalities or the log-Sobolev inequality. Possible relation of the Segal-Bargmann transformation with reverse hypercontractivity; Notations and...

- A Density Problem for Sobolev Spaces on Planar Domains. Koskela, Pekka; Zhang, Yi // Archive for Rational Mechanics & Analysis;Oct2016, Vol. 222 Issue 1, p1
We prove that for a bounded, simply connected domain $${\Omega \subset {\mathbb{R}^{2}}}$$ , the Sobolev space $${W^{1,\,\infty}(\Omega)}$$ is dense in $${W^{1,\,p}(\Omega)}$$ for any $${1\leqq p < \infty}$$ . Moreover, we show that if $${\Omega}$$ is Jordan, then...

- Weak convergence theory for strong materials with p( x)-growth. Sychev, M. // Doklady Mathematics;May2013, Vol. 87 Issue 3, p334
Let L: Î© Ã— R Ã— R â†’ R be a Caratheodory integrand with Under these assumptions the weak convergence theory holds for the integral functional $J(u): = \int\limits_\Omega {L(x,u(x),Du(x))dx} $ without further requirements. Weak convergence theory includes lower seraicontinuity...

- On Local HÃ¶rmander-Beurling Spaces. Villegas, Jairo // Turkish Journal of Mathematics;2004, Vol. 28 Issue 4, p387
In this paper we aim to extend a result of HÃ¶rmander's, that Bp ,kloc (Î©) âŠ‚ Cm (Î©) if (1+|â‹…|)m/k âˆˆ Lpâ€², to the setting of vector valued local HÃ¶rmander-Beurling spaces, as well as to show that the space âˆ©j=1âˆž Bpj, kjloc (Î©, E) (1 â‰¤ pj...

- Regularity Results for the Generalized Beltrami System. Shen Zhou Zheng, Mümün // Acta Mathematica Sinica;Mar2004, Vol. 20 Issue 2, p293
For the generalized Beltrami system with two characteristic matrices, we deal with the regularity of its very weak solutions in the Sobolev class

*W*loc1,*r*(Î© Rn) (1 < *r*<*n*). By changing the generalized Beltrami system into a class of a divergent... - The dichotomy between traces on d-sets Î“ in â„ n and the density of D(â„ n \Î“) in function spaces. Triebel, Hans // Acta Mathematica Sinica;Apr2008, Vol. 24 Issue 4, p539
A space A (â„ n ) with A = B or A = F and s âˆˆ â„, 0 < p,q < âˆž either has a trace in L p (Î“), where Î“ is a compact d-set in â„ n with 0 < d < n, or D(â„ n Î“) is dense in it. Related dichotomy numbers are introduced and calculated.

- A new approach to Sobolev spaces and connections to $\mathbf\Gamma$ -convergence. Augusto C. Ponce // Calculus of Variations & Partial Differential Equations;Mar2004, Vol. 19 Issue 3, p229
This is a follow-up of a paper of Bourgain, Brezis and Mironescu [2]. We study how the existence of the limit $$\int_\Omega \! \int_\Omega \omega\left( \frac{|f(x)-f(y)|}{|x-y|} \right) \rho_\varepsilon(x-y) \, dx \, dy \quad \text{as $\varepsilon \downarrow 0$}, $$ for $\omega : [0,\infty) \to...

- Error analysis of spectral method on a triangle. Li-Lian Wang // Advances in Computational Mathematics;May2007, Vol. 26 Issue 4, p473
Abstract??In this paper, the orthogonal polynomial approximation on triangle, proposed by Dubiner, is studied. Some approximation results are established in certain non-uniformly Jacobi-weighted Sobolev space, which play important role in numerical analysis of spectral and triangle spectral...

- On an Inverse Problem for a Parabolic Equation. Tkachenko, D. S. // Mathematical Notes;May/Jun2004, Vol. 75 Issue 5/6, p676
In this paper, we study the inverse problem of the reconstruction of the right-hand side of special form for a parabolic equation in $u$ in which the coefficients of $u\_t$ and $u$ depend on $(x,t)$, with overdetermination given by the integral of the...