# Absolute continuity and summability of transport densities: simpler proofs and new estimates

## Related Articles

- The convexity principle and its applications. Polyak, B.T. // Bulletin of the Brazilian Mathematical Society;Apr2003, Vol. 34 Issue 1, p59
Recently [1,2] the new convexity principle has been validated. It states that a nonlinear image of a small ball in a Hilbert space is convex, provided that the map is C[sup 1,1] and the center of the ball is a regular point of the map. This result has numerous applications in linear algebra,...

- Interpolation and partial differential equations. Maligranda, Lech; Persson, Lars Erik; Wyller, John // Journal of Mathematical Physics;Sep94, Vol. 35 Issue 9, p5035
One of the main motivations for developing the theory of interpolation was to apply it to the theory of partial differential equations (PDEs). Nowadays interpolation theory has been developed in an almost unbelievable way {see the bibliography of Maligranda [Interpolation of Operators and...

- HARMONICITY AND SUBMANIFOLD MAPS. Udriste, Constantin; Arsinte, Vasile; Bejenaru, Andreea // Journal of Advanced Mathematical Studies;Feb2012, Vol. 5 Issue 1, p48
The aim of this paper is fourfold. Firstly, we introduce and study the fultra-harmonic maps. Secondly, we recall the geometric dynamics generated by a first order normal PDE system and we give original results regarding the geometric dynamics generated by other first order PDE systems. Thirdly,...

- A SOLUTION OF Î”u + f(u) = 0 ON A TRIANGLE. CIMA, JOSEPH A.; DERRICK, WILLIAM // Bulletin of the Irish Mathematical Society;Winter2011, Issue 68, p55
We use moving planes and thin domain maximum principles to prove the maximum value of a positive solution to the equation Î”u + f(u) = 0 on a symmetric-convex domain Î© , with u = 0 on the boundary of Î© lies on the line of symmetry of the domain. If the domain has two or more lines of...

- On a Functional Operation Generating Convex Functions, Part 2: Algebraic Properties. Maréchal, P. // Journal of Optimization Theory & Applications;Aug2005, Vol. 126 Issue 2, p357
Algebraic properties of the functional operation introduced in Part 1 of this paper (Ref 1) are considered. In essence, the functional operation is shown to be associative, right distributive with respect to addition, and left distributive with respect to epigraphic sum.

- Multiplicity of solutions for anisotropic quasilinear elliptic equations with variable exponents. Stancu-Dumitru, Denisa // Bulletin of the Belgian Mathematical Society - Simon Stevin;Dec2010, Vol. 17 Issue 5, p875
We study an anisotropic partial differential equation on a bounded domain Î© âŠ‚ RN. We prove the existence of at least two nontrivial weak solutions using as main tools themountain pass lemma and Ekeland's variational principle.

- A Sobolev PoincarÃ© type inequality for integral varifolds. Menne, Ulrich // Calculus of Variations & Partial Differential Equations;Jul2010, Vol. 38 Issue 3/4, p369
In this work a local inequality is provided which bounds the distance of an integral varifold from a multivalued plane (height) by its tilt and mean curvature. The bounds obtained for the exponents of the Lebesgue spaces involved are shown to be sharp.

- On a general SU(3) Toda system. Gladiali, Francesca; Grossi, Massimo; Wei, Juncheng // Calculus of Variations & Partial Differential Equations;Dec2015, Vol. 54 Issue 4, p3353
We study the following generalized SU(3) Toda System where $$\mu >-2$$ . We prove the existence of radial solutions bifurcating from the radial solution $$(\log \frac{64}{(2+\mu ) (8+|x|^2)^2}, \log \frac{64}{(2+\mu ) (8+|x|^2)^2})$$ at the values $$\mu =\mu _n=2\frac{2-n-n^2}{2+n+n^2},\ n\in...

- Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold. Dyn, N.; Narcowich, F.J.; Ward, J.D. // Constructive Approximation;1999, Vol. 15 Issue 2, p175
The purpose of this paper is to study certain variational principles and Sobolev-type estimates for the approximation order resulting from using strictly positive definite kernels to do generalized Hermite interpolation on a closed (i.e., no boundary), compact, connected, orientable,...