Generation and analysis of quasimonoenergetic electron beams by laser-plasma interaction in transitional region from the self-modulated laser wakefield to bubble acceleration regime

Masuda, S.; Miura, E.
September 2009
Physics of Plasmas;Sep2009, Vol. 16 Issue 9, p093105
Academic Journal
Generation of quasimonoenergetic electron beams in a transitional region from the self-modulated laser wakefield to bubble acceleration regime is reported. Quasimonoenergetic electron beams containing more than 3×108 electrons in the monoenergetic peak with energies of 40–60 MeV have been obtained from a plasma with an electron density of 1.6×1019 cm-3 produced by an 8 TW, 50 fs laser pulse. The generation of quasimonoenergetic electron beams is investigated by two-dimensional particle-in-cell simulations. Few periods of the plasma wave are located inside the laser pulse, because the laser pulse duration is longer than the wavelength of the plasma wave. Electrons trapped in the first period of the plasma wave can form the monoenergetic bunch, even though the trapped electrons interact directly with the laser field. The quasimonoenergetic electron beam can be obtained due to the small contribution of the direct acceleration by the laser field. This type of monoenergetic electron acceleration is different from that of both the self-modulated laser wakefield and bubble acceleration regimes, in which the trapped electrons in the plasma wave are located behind the laser pulse due to the pulse compression or fragmentation and free from the laser electric field. This result suggests a new regime for the quasimonoenergetic electron acceleration in the region between the self-modulation and bubble regime.


Related Articles

  • Millimeter wave generation from a pseudospark-sourced electron beam. Yin, H.; Cross, A. W.; He, W.; Phelps, A. D. R.; Ronald, K.; Bowes, D.; Robertson, C. W. // Physics of Plasmas;Jun2009, Vol. 16 Issue 6, p063105 

    Experimental studies of the production and propagation of an electron beam from a multigap pseudospark discharge are presented. From a three-gap pseudospark, a beam up to 680 A was measured at the anode at an applied dc voltage of 23 kV. This beam can propagate downstream as far as 20 cm in a...

  • Fokker–Planck simulations for core heating in subignition cone-guiding fast ignition targets. Johzaki, Tomoyuki; Nakao, Yasuyuki; Mima, Kunioki // Physics of Plasmas;Jun2009, Vol. 16 Issue 6, p062706 

    On the basis of two-dimensional coupled relativistic Fokker–Planck and fluid simulations, the core heating by fast electron beam in subignition cone-guiding fast ignition targets is investigated. It was found that the magnetic field due to the thermoelectric current reduces the beam...

  • Rotation velocities in the plasma edge driven viscously by scrape-off layer flows. Stacey, W. M. // Physics of Plasmas;Jun2009, Vol. 16 Issue 6, p062505 

    Scrape-off layer parallel flows and the viscous fluxes in the plasma edge driven thereby are calculated from neoclassical theory for a model problem representative of a present experiment, using an analytical model for elongated flux surface geometry with a Shafranov shift to provide a realistic...

  • Shock Hugoniot and temperature data for polystyrene obtained with quartz standard. Ozaki, N.; Sano, T.; Ikoma, M.; Shigemori, K.; Kimura, T.; Miyanishi, K.; Vinci, T.; Ree, F. H.; Azechi, H.; Endo, T.; Hironaka, Y.; Hori, Y.; Iwamoto, A.; Kadono, T.; Nagatomo, H.; Nakai, M.; Norimatsu, T.; Okuchi, T.; Otani, K.; Sakaiya, T. // Physics of Plasmas;Jun2009, Vol. 16 Issue 6, p062702 

    Equation-of-state data, not only pressure and density but also temperature, for polystyrene (CH) are obtained up to 510 GPa. The region investigated in this work corresponds to an intermediate region, bridging a large gap between available gas-gun data below 60 GPa and laser shock data above 500...

  • Wave coupling in sheet- and multiple-beam traveling-wave tubes. Nusinovich, Gregory S.; Cooke, Simon J.; Botton, Moti; Levush, Baruch // Physics of Plasmas;Jun2009, Vol. 16 Issue 6, p063102 

    To increase the power level of the sources of coherent electromagnetic radiation at frequencies from 100 GHz up to the terahertz range it makes sense to develop devices with a spatially extended interaction space. Sheet-beam and multiple-beam devices belong to the category. In the present paper...

  • Direct computation of the growth rate for the instability of a warm relativistic electron beam in a cold magnetized plasma. Timofeev, I. V.; Lotov, K. V.; Terekhov, A. V. // Physics of Plasmas;Jun2009, Vol. 16 Issue 6, p063101 

    The fully kinetic, fully electromagnetic dispersion equation for a warm relativistic electron beam in a cold magnetized plasma is numerically solved with no simplifying assumptions made. For magnetic fields of various strengths, the growth rate maps for the beam-plasma instability are plotted...

  • The transition from plasma gratings to cavitons in laser-plasma interactions. Liu, Z. J.; He, X. T.; Zheng, C. Y.; Wang, Y. G. // Physics of Plasmas;Sep2009, Vol. 16 Issue 9, p093108 

    One-dimensional Vlasov–Maxwell simulations of laser-plasma interactions are presented. It is shown that plasma gratings and density cavitons are formed sequentially. There are strong electromagnetic fields in the cavitons and the electromagnetic structures are nearly standing and...

  • Landau and non-Landau linear damping: Physics of the dissipation. Chust, T.; Belmont, G.; Mottez, F.; Hess, S. // Physics of Plasmas;Sep2009, Vol. 16 Issue 9, p092104 

    For linear Langmuir waves, it is well known that the energy exchanges generally lead to a continuous dissipation, on average, from the electric form to the kinetic one. Many papers have estimated these exchanges and indeed shown that the classical Landau value γL, characterizing the electric...

  • Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas. Jie-fang Zhang; Yue-yue Wang; Lei Wu // Physics of Plasmas;Jun2009, Vol. 16 Issue 6, p062102 

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schrödinger equation is derived and the modulation instability of ion acoustic wave is analyzed,...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics