Comparison of Si doping effect in optical properties of GaN epilayers and In[sub x]Ga[sub 1-x]N quantum wells

Oh, Eunsoon; Eunsoon Oh; Sone, Cheolsoo; Cheolsoo Sone; Nam, Okhyun; Okhyun Nam; Park, Hyeongsoo; Hyaeongsoo Park; Park, Yongjo; Yongjo Park
May 2000
Applied Physics Letters;5/29/2000, Vol. 76 Issue 22
Academic Journal
Micro-photoluminescence (PL) spectra of Si-doped GaN epilayers and three-period In[sub 0.1]Ga[sub 0.9]N/In[sub 0.02]Ga[sub 0.98]N:Si quantum-well (QW) structures were studied and compared with macro-PL spectra. The shift of the macro-PL peak with increasing Si concentration was found to be similar to that with increasing excitation density in both GaN:Si and In[sub x]Ga[sub 1-x]N QWs. Also, it was observed that the macro-PL intensity increased with increasing Si concentration in GaN:Si and In[sub x]Ga[sub 1-x]N QWs, but the micro-PL intensity was independent of doping concentration. These results indicate that the changes of PL spectra with Si doping are mainly due to the increase of carriers. © 2000 American Institute of Physics.


Related Articles

  • Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells. Kuokstis, E.; Yang, J. W.; Simin, G.; Khan, M. Asif; Gaska, R.; Shur, M. S. // Applied Physics Letters;2/11/2002, Vol. 80 Issue 6, p977 

    We present the results of a comparative photoluminescence (PL) study of GaN and InGaN-based epilayers, and InGaN/GaN multiple quantum wells (MQWs). Room-temperature PL spectra were measured for a very broad range of optical excitation from 10 mW/cm2 up to 1 MW/cm2. In contrast to GaN epilayers,...

  • Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells. Wang, T.; Nakagawa, D.; Wang, J.; Sugahara, T.; Sakai, S. // Applied Physics Letters;12/14/1998, Vol. 73 Issue 24 

    The photoluminescence investigation at a low temperature was carried out in In[sub 0.13]Ga[sub 0.87]N/GaN single quantum well (SQW) and multiple quantum wells with 10 (10QW) or 5 periods. With decreasing number of wells, the emission peak shows a redshift. In the case of a low excitation power,...

  • Photoluminescence from sub-nanometer-thick GaN/Al[sub 0.8]Ga[sub 0.2]N quantum wells. Someya, T.; Hoshino, K.; Harris, J. C.; Tachibana, K.; Arakawa, Y. // Applied Physics Letters;8/28/2000, Vol. 77 Issue 9 

    Photoluminescence (PL) spectra were measured for sub-nanometer-thick GaN quantum wells (QWs) with Al[sub 0.8]Ga[sub 0.2]N barriers, which were grown by atmospheric-pressure metal-organic chemical-vapor deposition. The thickness of the GaN QW layers was systematically varied from 1 to 4 ML. We...

  • Photoluminescence properties of a GaN[sub 0.015]As[sub 0.985]/GaAs single quantum well under short pulse excitation. Luo, X. D.; Xu, Z. Y.; Ge, W. K.; Pan, Z.; Li, L. H.; Lin, Y. W. // Applied Physics Letters;8/13/2001, Vol. 79 Issue 7 

    Under short pulse laser excitation, we have observed an extra high-energy photoluminescence (PL) emission from GaNAs/GaAs single quantum wells (QWs). It dominates the PL spectra under high excitation and/or at high temperature. By measuring the PL dependence on both temperature and excitation...

  • Channeling as a mechanism for dry etch damage in GaN. Haberer, Elaine D.; Chen, Ching-Hui; Ching-Hui Chen; Abare, Amber; Hansen, Monica; Denbaars, Steve; Coldren, Larry; Mishra, Umesh; Hu, Evelyn L. // Applied Physics Letters;6/26/2000, Vol. 76 Issue 26 

    Etch damage of GaN was investigated using a quantum-well probe structure. A clear decrease in photoluminescence (PL) intensity was observed and was aggravated with increasing ion-beam voltage. The magnitude of decrease in PL intensity was much larger than expected, even greater than for GaAs...

  • Luminescence energy and carrier lifetime in InGaN/GaN quantum wells as a function of applied biaxial strain. Shapiro, N. A.; Feick, H.; Hong, W.; Cich, M.; Armitage, R.; Weber, F. R. // Journal of Applied Physics;10/1/2003, Vol. 94 Issue 7, p4520 

    Continuous-wave and time-resolved photoluminescence of InGaN quantum wells are measured as a function of applied biaxial strain, which provides a unique means of altering the built-in polarization field in these structures. The direction and magnitude of the shift of the luminescence-peak energy...

  • The Tail of Localized States in the Band Gap of the Quantum Well in the In0.2Ga0.8N/GaN System and Its Effect on the Laser-Excited Photoluminescence Spectrum. Jacobson, M. A.; Nelson, D. K.; Konstantinov, O. V.; Matveentsev, A. V. // Semiconductors;Dec2005, Vol. 39 Issue 12, p1410 

    It is established experimentally that the peak in the photoluminescence spectrum of the In0.2Ga0.8N/GaN heterostructure with a quantum well shifts by ∼150 meV as the power density of a nitrogen laser used for excitation is increased from 10 to 1000 kW/cm2. The large blue shift is...

  • Polarization effects in photoluminescence of C- and M-plane GaN/AlGaN multiple quantum wells. Kuokstis, E.; Chen, C. Q.; Gaevski, M. E.; Sun, W. H.; Yang, J. W.; Simin, G.; Asif Khan, M.; Maruska, H. P.; Hill, D. W.; Chou, M. C.; Gallagher, J. J.; Chai, B. // Applied Physics Letters;11/25/2002, Vol. 81 Issue 22, p4130 

    Polarization effects have been studied in GaN/AlGaN multiple quantum wells (MQWs) with different c-axis orientation by means of excitation-dependent photoluminescence (PL) analysis. Quantum structures were grown on [0001]-oriented sapphire substrates (C plane) and single-crystalline...

  • Room temperature green light emission from nonpolar cubic InGaN/GaN multi-quantum-wells. Li, Shunfeng; Schörmann, Jörg; As, Donat J.; Lischka, Klaus // Applied Physics Letters;2/12/2007, Vol. 90 Issue 7, p071903 

    Cubic InGaN/GaN multi-quantum-wells (MQWs) with high structural and optical quality are achieved by utilizing freestanding 3C-SiC (001) substrates and optimizing InGaN quantum well growth. Superlattice peaks up to fifth order are clearly resolved in x-ray diffraction. Bright green room...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics